高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ
引用本文:
Citation:

胆碱氨基酸离子液体水溶液在T=288.15~323.15 K的传输性质

    作者简介: 周宁宁(1996-),女,安徽人,硕士生,研究方向为溶液化学。E-mail:2952910375@qq.com;
    通讯作者: 殷天翔, yintx@ecust.edu.cn
  • 中图分类号: O64

Transport Properties of Aqueous Solution of Choline-amino Acid Based Ionic Liquid in the Temperature Range 288.15—323.15K

    Corresponding author: YIN Tianxiang, yintx@ecust.edu.cn
  • CLC number: O64

  • 摘要: 合成了两种基于胆碱和氨基酸的离子液体(cholinium-amino acid based ionic liquids,CHAAILs),即胆碱甘氨酸离子液体 [Ch][Gly]和胆碱丙氨酸离子液体[Ch][Ala]。测定了水+ [Ch][Gly]和水+ [Ch][Ala]体系在T=288.15~323.15 K、间隔5 K下的黏度和电导率。黏度和电导率随温度的变化可以分别用Arrhenius方程和VFT方程来描述。水+ CHAAILs混合物的黏度随温度的升高而降低,电导率随温度的升高而升高。用Redlich-Kister方程计算并关联超额黏度(Δη),结果显示出明显的负偏差,且随温度的降低和氨基酸阴离子烷基链长度的增加而增加。水+ CHAAILs混合物的摩尔电导率和黏度间的关系用Walden规则进行了关联,结果显示水+ [Ch][Ala]的二元体系具有较好的离子率。
  • 图 1  (a) [Ch][Gly] 和 (b) [Ch][Ala] 的1H NMR (400 MHz, D2O)谱图

    Figure 1.  1H NMR (400 MHz, D2O) spectra for (a) [Ch][Gly] and (b) [Ch][Ala]

    图 2  (a) [Ch][Gly] 和 (b) [Ch][Ala] 的13C-NMR (400 MHz, D2O)谱图

    Figure 2.  13C-NMR (400 MHz, D2O) spectra for (a) [Ch][Gly] and (b) [Ch][Ala]

    图 3  不同摩尔分数x1的[Ch][Gly] +水(a)和[Ch][Ala] +水(b)二元混合物溶液在T =288.15~323.15 K的黏度η

    Figure 3.  Viscosities η of binary mixtures of (a)[Ch][Gly] + water and (b) [Ch][Ala]+water of various mole fractions x1 of IL at T = 288.15–323.15 K

    图 4  二元体系的黏度实验值与Arrhenius方程(实线)计算值的比较

    Figure 4.  Comparison of the experimental values of viscosities and those calculated by the Arrhenius equation (solid lines) of the binary systems

    图 5  (a) [Ch][Gly] +水混合物和(b) [Ch][Ala] +水混合物在不同温度下的超额黏度

    Figure 5.  Excess viscosities of binary mixtures for (a) [Ch][Gly] + water mixtures and (b) [Ch][Ala] + water mixtures at various temperatures

    图 6  二元混合物(a) [Ch][Gly] +水混合物 and (b) [Ch][Ala] +水混合物的摩尔电导率Λ随体积浓度c的变化

    Figure 6.  Mole conductivity Λ as a function of volumetric concentration c of IL for binary mixtures of (a) [Ch][Gly] + water mixtures and (b) [Ch][Ala] + water mixtures

    图 7  不同摩尔分数的离子液体 (a) [Ch][Gly] +水二元混合物和(b) [Ch][Ala] + 水二元混合物的lg Λ和 lg η−1之间的关系

    Figure 7.  Relationships of lg Λ and lg η−1 of binary mixtures of (a) [Ch][Gly] + water and (b) [Ch][Ala] + water with different mole fractions of IL

    图 8  CHAAILs+水二元混合物电导率VFT方程的拟合曲线

    Figure 8.  Electrical conductivities by VFT equation of the binary mixtures CHAAILs + water

    表 1  不同摩尔分数[Ch][Gly](1) +水(2)二元混合物溶液在T = 288.15~323.15 K的黏度η和超额黏度Δη

    Table 1.  Viscosities η and excess viscosities Δη of binary mixtures [Ch][Gly](1) + water(2) with various mole fractions x1 of ILs at T = 288.15—323.15 K1)

    x1η/
    (mPa·s)
    Δη/
    (mPa·s)
    η/
    (mPa·s)
    Δη/
    (mPa·s)
    η/
    (mPa·s)
    Δη/
    (mPa·s)
    η/
    (mPa·s)
    Δη/
    (mPa·s)
    η/
    (mPa·s)
    Δη/
    (mPa·s)
    η/
    (mPa·s)
    Δη/
    (mPa·s)
    η/
    (mPa·s)
    Δη/
    (mPa·s)
    η/
    (mPa·s)
    Δη/
    (mPa·s)
    288.15 K293.15 K298.15 K303.15 K 308.15 K313.15 K318.15 K323.15 K
    1368102621018840125408320603046603450
    0.90232549−7721931−4351346−355934−197716−35489−55361−60280−31
    0.79971886−10581464−633972−535693−310493−172382−100300−73228−47
    0.69931162−13021012−743664−597461−378358−199272−132215−98159−71
    0.599857−1348660−911502−627353−399256−243196−165155−124117−90
    0.4998563−1278474−837347−595248−379179−237136−166111−12388−85
    0.3998316−1156239−810183−571137−364103−23084−15867−12056−83
    0.2995121−982100−68677−48858−31849−20140−14134−10628−75
    0.200365−67356−47045−33337−21429−13826−9622−7219−50
    0.09878−3577−2536−1815−1204−784−563−433−32
    01.08700.99700.89100.79800.71700.65000.59900.5480
    下载: 导出CSV

    表 2  不同摩尔分数[Ch][Ala](1)+水(2)二元混合物溶液在T = 288.15~323.15 K的黏度η和超额黏度Δη

    Table 2.  Viscosities η and excess viscosities Δη of binary mixtures [Ch][Ala](1) + water(2) with various mole fractions x1 of ILs at T = 288.15—323.15 K1)

    x1η/
    (mPa·s)
    Δη/
    (mPa·s)
    η/
    (mPa·s)
    Δη/
    (mPa·s)
    η/
    (mPa·s)
    Δη/
    (mPa·s)
    η/
    (mPa·s)
    Δη/
    (mPa·s)
    η/
    (mPa·s)
    Δη/
    (mPa·s)
    η/
    (mPa·s)
    Δη/
    (mPa·s)
    η/
    (mPa·s)
    Δη/
    (mPa·s)
    η/
    (mPa·s)
    Δη/
    (mPa·s)
    288.15 K293.15 K298.15 K303.15 K 308.15 K313.15 K318.15 K323.15 K
    1474803601022450149309940728052303810
    0.93465−8092468−7731667−3531135−209776−118561−94404−67299−44
    0.79672545−12381807−10621163−626808−382591−201421−159305−111228−76
    0.68851752−15181234−1246826−720580−449409−275309−193228−132171−91
    0.60231307−1553899−1271612−741424−475308−291233−206171−144134−96
    0.4801780−1500548−1181384−694274−443197−280148−202113−13888−95
    0.4006515−1388361−1083256−644187−411137−261104−18881−12966−87
    0.3201307−1214222−931158−561116−36390−22970−16356−11245−77
    0.2072101−88473−67456−41043−26735−17128−12323−8619−60
    0.085111−3947−3006−1865−1234−814−593−423−30
    01.08700.99700.89100.79800.71700.65000.59900.5480
    1) Standard uncertainty is u(T) = 0.1K; The relative standard uncertainties are ur(x1) = 0.0001, ur(η) = 0.05, and urη) = 0.08, respectively
    下载: 导出CSV

    表 3  [Ch][Gly] +水和 [Ch][Ala] +水混合物分别在T = 288.15~323.15 K下黏度的可调整参数a,b和方程的拟合偏差(SD)

    Table 3.  Adjustable parameters a and b in Arrhenius equation for viscosities and SD of the fittings of the binary mixtures [Ch][Gly] + water and [Ch][Ala] + water at different mole fractions x1 of ILs

    Mixturex1abSD
    [Ch][Gly](1)+water(2)11464460.043
    0.9023−1360190.022
    0.7997−1257400.046
    0.6993−1254580.061
    0.599−1253940.033
    0.4998−1251940.054
    0.3998−1146980.028
    0.2995−939170.032
    0.2003−833810.03
    0.0987−725480.007
    [Ch][Ala](1)+water(2)1−1569010.048
    0.9−1566230.022
    0.7967−1564700.027
    0.6885−1462220.027
    0.6023−1460970.036
    0.4801−1458450.029
    0.4006−1355350.037
    0.3201−1251140.042
    0.2072−1143530.037
    0.0851−829330.033
    下载: 导出CSV

    表 4  [Ch][Gly] +水和 [Ch][Ala] +水二元体系分别在T = 288.15~323.15 K下黏度的可调整参数a,b和方程的拟合偏差(SD)

    Table 4.  Adjustable parameter values Ai (i=0,1, 2, 3) and SD of excess viscosities for [Ch][Gly] + water mixtures and [Ch][Ala] + water mixtures by the Redlich-Kister equation at T = 288.15—323.15 K

    MixtureT/KA0A1A2A3SD
    [Ch][Gly](1)+water(2)288.15−51491397−955163964
    293.15−3440346−352147035
    298.15−2433526−870120810
    303.15−1565327−3193868
    308.15−992197294−55217
    313.15−670−311284
    318.15−492−66−112517
    323.15−352−334−484
    [Ch][Ala](1)+water(2)288.15−60801746−139989613
    293.15−47861722−1901161122
    298.15−28571105−699−11812
    303.15−1829656−324−2457
    308.15−1148314−24−2824
    313.15−813202−135−241
    318.15−558144−120−212
    323.15−37999−95−451
    下载: 导出CSV

    表 5  CHAAILs+水二元混合物在不同温度下的电导率κ

    Table 5.  Electrical conductivities κ of [Ch][AA]- water binary mixtures at different temperatures 1)

    Mixturex1κ/mS·cm-1
    288.15K 293.15K298.15K303.15K308.15K313.15K318.15K323.15K
    [Ch][Ala](1)+water(2)1.00000.1160.1730.2680.3750.5120.6450.8791.081
    0.90230.1320.240.3460.5550.760.9881.2411.597
    0.79970.2560.3910.5480.7931.0661.3831.7492.226
    0.69930.3870.5430.7571.0321.3711.7692.2652.865
    0.5990.480.6750.9231.2491.6572.162.7053.41
    0.49980.8351.1461.542.032.6233.3174.1035.042
    0.39981.2121.652.22.8553.6654.5555.636.795
    0.29951.5132.042.713.534.4355.516.6858.12
    0.20031.882.533.354.335.436.78.149.81
    0.098715.8418.55521.725.0528.6532.536.4540.75
    00.000460.00290.002960.003020.004110.00460.005040.00515
    [Ch][Ala](1)+water(2)1.00000.0620.0990.150.2290.330.460.6290.852
    0.90000.0860.1330.2050.3010.4290.5910.7971.052
    0.79670.1230.1890.2890.4160.5880.7941.0591.391
    0.68850.1810.2820.410.5840.8151.0821.4321.857
    0.60230.2430.3680.5340.7591.0421.3851.8092.315
    0.48010.390.5770.8261.1461.5462.052.633.4
    0.40060.5630.8261.161.5752.032.43.164.23
    0.32010.8861.2431.692.152.753.74.65.65
    0.20721.6252.242.983.864.876.087.499.15
    0.085112.414.8317.6422.526.531.13539
    00.000460.00290.002960.003020.004110.00460.005040.00515
    1)The relative standard uncertainties are ur(x1)= 0.0001 and ur(κ) = 0.008, respectively
    下载: 导出CSV

    表 6  离子液体不同摩尔分数x1下[Ch][Gly] +水和[Ch][Ala] +水二元混合物电导率的VFT方程拟合参数

    Table 6.  Fitting parameters of VFT equation for conductivity for binary mixtures [Ch][Gly] + water and [Ch][Ala] + water at different molar fractions x1 of ILs.

    Mixturex1κ0A4/KT0/KSD
    [Ch][Ala](1)+water(2)11635692100.014
    0.9023563072370.02
    0.79973575972060.009
    0.6993396311671620.006
    0.599253210081710.013
    0.499815438361770.227
    0.399811527121840.012
    0.299511896941840.024
    0.200311936571860.018
    0.098714435941560.049
    [Ch][Ala](1)+water(2)1535313321710.003
    0.914149731880.001
    0.796716879781850.004
    0.688520019841820.05
    0.602311628171920.002
    0.4801500311231690.013
    0.400613176323141000.105
    0.3201766512331520.06
    0.207231709051680.025
    0.08514222472190.058
    下载: 导出CSV
  • [1] DUPONT J. From molten salts to ionic liquids: A “nano”journey[J]. Accounts of Chemical Research, 2011, 44(11): 1223-1231. doi: 10.1021/ar2000937
    [2] ZENG S J, ZHANG X P, LU B. Ionic-liquid-based CO2 capture systems: Structure, interaction and process[J]. Chemical Reviews, 2017, 117(14): 9625-9673. doi: 10.1021/acs.chemrev.7b00072
    [3] 于方圆, 周莉, 何妍, 彭昌军, 等. 离子液体修饰的三蝶烯多孔材料用于去除水溶液中阴离子染料[J]. 华东理工大学学报(自然科学版), 2020(02): 155-163.
    [4] BERTHOD A, RUIZ-ANGEL M J, CARDA-BROCH S. Recent advances on ionic liquid uses in separation techniques[J]. Journal of Chromatography A, 2018, 1559: 2-16. doi: 10.1016/j.chroma.2017.09.044
    [5] VENTURA S P M, FA E S, QUENTAL M V, et al. Ionic-liquid-mediated extraction and separation processes for bioactive compounds: Past, present, and future trends[J]. Chemical Reviews, 2017, 117(10): 6984-7052. doi: 10.1021/acs.chemrev.6b00550
    [6] ABO-HAMAD A, ALSAADI M A, HAYYAN M, et al. Ionic liquid-carbon nanomaterial hybrids for electrochemical sensor applications: A review[J]. Electrochimica Acta, 2016, 193: 321-343. doi: 10.1016/j.electacta.2016.02.044
    [7] VAFAEEZADEH M, ALINEZHAD H. Brønsted acidic ionic liquids: Green catalysts for essential organic reactions[J]. Journal of Molecular Liquids, 2016, 218: 95-105. doi: 10.1016/j.molliq.2016.02.017
    [8] WANG H, GURAU G, ROGERS R D. Ionic liquid processing of cellulose[J]. Chemical Society Reviews, 2012, 41(4): 1519-1537. doi: 10.1039/c2cs15311d
    [9] ZHANG Q, SHREEVE J M. Ionic liquid propellants: Future fuels for space propulsion[J]. Chemistry, 2013, 19(46): 15446-15451. doi: 10.1002/chem.201303131
    [10] EGOROVA K S, ANANIKOV V P. Fundamental importance of ionic interactions in the liquid phase: A review of recent studies of ionic liquids in biomedical and pharmaceutical applications[J]. Journal of Molecular Liquids, 2018, 272: 271-300. doi: 10.1016/j.molliq.2018.09.025
    [11] GARCIA M T, GATHERGOOD N, SCAMMELLS P J. Biodegradable ionic liquids: Part II. Effect of the anion and toxicology[J]. Green Chemistry, 2005, 7(1): 9-14. doi: 10.1039/b411922c
    [12] GOUVEIA W, JORGE T F, MARTINS S, et al. Toxicity of ionic liquids prepared from biomaterials[J]. Chemosphere, 2014, 104: 51-56. doi: 10.1016/j.chemosphere.2013.10.055
    [13] HECKENBACH M E, ROMERO F N, GREEN M D, et al. Meta-analysis of ionic liquid literature and toxicology[J]. Chemosphere, 2016, 150: 266-274. doi: 10.1016/j.chemosphere.2016.02.029
    [14] KENTA F M Y, HIROYUKI O. Room temperature ionic liquids from 20 natural amino acids[J]. Journal of the American Chemical Society, 2005, 127: 2398-2399. doi: 10.1021/ja043451i
    [15] MORIEL P, GARCÍA-SUÁREZ E J, MARTÍNEZ M, et al. Synthesis, characterization, and catalytic activity of ionic liquids based on biosources[J]. Tetrahedron Letters, 2010, 51(37): 4877-4881. doi: 10.1016/j.tetlet.2010.07.060
    [16] LIU Q P, HOU X D, LI N, et al. Ionic liquids from renewable biomaterials: synthesis, characterization and application in the pretreatment of biomass[J]. Green Chem, 2012, 14(2): 304-307. doi: 10.1039/C2GC16128A
    [17] DE SANTIS S, MASCI G, CASCIOTTA F, et al. Cholinium-amino acid based ionic liquids: A new method of synthesis and physico-chemical characterization[J]. Physical Chemistry Chemical Physics, 2015, 17(32): 20687-20698. doi: 10.1039/C5CP01612F
    [18] YAZDANI A, SIVAPRAGASAM M, LEVEQUE J M, et al. Microbial biocompatibility and biodegradability of choline-amino acid based ionic liquids[J]. Journal of Microbial & Biochemical Technology, 2016, 8(5): 415-421.
    [19] HOU X D, LIU Q P, SMITH T J, et al. Evaluation of toxicity and biodegradability of cholinium amino acids ionic liquids[J]. PLoS One, 2013, 8(3): e59145. doi: 10.1371/journal.pone.0059145
    [20] TAO D J, CHENG Z, CHEN F F, et al. Synthesis and thermophysical properties of biocompatible cholinium-based amino acid ionic liquids[J]. Journal of Chemical & Engineering Data, 2013, 58(6): 1542-1548.
    [21] DEL OLMO L, LAGE-ESTEBANEZ I, LOPEZ R, et al. Understanding the structure and properties of cholinium amino acid based ionic liquids[J]. Journal of Physical Chemistry B, 2016, 120(39): 10327-10335. doi: 10.1021/acs.jpcb.6b06969
    [22] CAPARICA R, JULIO A, BABY A R, et al. Choline-amino acid ionic liquids as green functional excipients to enhance drug solubility[J]. Pharmaceutics, 2018, 10(4): 288. doi: 10.3390/pharmaceutics10040288
    [23] MOOSAVI M, BANAZADEH N, TORKZADEH M. Structure and dynamics in amino acid choline-based ionic liquids: A combined QTAIM, NCI, DFT, and molecular dynamics study[J]. Journal of Physical Chemistry B, 2019, 123(18): 4070-4084. doi: 10.1021/acs.jpcb.9b01799
    [24] ZHANG L. Pharmacokinetics and drug delivery systems for puerarin, a bioactive flavone from traditional Chinese medicine[J]. Drug Delivery, 2019, 26(1): 860-869. doi: 10.1080/10717544.2019.1660732
    [25] ZAPPI D, CAMINITI R, INGO G M, et al. Biologically friendly room temperature ionic liquids and nanomaterials for the development of innovative enzymatic biosensors[J]. Talanta, 2017, 175: 566-572. doi: 10.1016/j.talanta.2017.07.081
    [26] BI Y H, DUAN Z Q, LI X Q, et al. Introducing biobased ionic liquids as the nonaqueous media for enzymatic synthesis of phosphatidylserine[J]. Journal of Agricultural and Food Chemistry, 2015, 63(5): 1558-1561. doi: 10.1021/jf505296k
    [27] WANG R, CHANG Y, TAN Z, et al. Applications of choline amino acid ionic liquid in extraction and separation of flavonoids and pectin from ponkan peels[J]. Separation Science and Technology, 2016, 51(7): 1093-10102. doi: 10.1080/01496395.2016.1143006
    [28] BHATTACHARYYA S, SHAH F U. Ether functionalized choline tethered amino acid ionic liquids for enhanced CO2 capture[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(10): 5441-5449.
    [29] CHEN C, FENG N, GUO Q, et al. Surface engineering of a chromium metal-organic framework with bifunctional ionic liquids for selective CO2 adsorption: Synergistic effect between multiple active sites[J]. Journal of Colloid and Interface Science, 2018, 521: 91-101. doi: 10.1016/j.jcis.2018.03.029
    [30] 徐金乔, 朱雨航, 张少泽, 等. 咪唑类脯氨酸离子液体水溶液体积性质[J]. 华东理工大学学报(自然科学版), 2018(5): 691-698.
    [31] 耿彦芳, 刘鑫, 虞大红, 等. [C4mim][BF4]与乙醇胺和N, N-二甲基乙醇胺混合体系的密度、黏度和电导率[J]. 华东理工大学学报(自然科学版), 2009(03): 400-406. doi: 10.3969/j.issn.1006-3080.2009.03.013
    [32] HOU X D, LI N, ZONG M H. Facile and simple pretreatment of sugar cane bagasse without size reduction using renewable ionic liquids–water mixtures[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(5): 519-526.
    [33] TO T Q, PROCTER K, SIMMONS B A, et al. Low cost ionic liquid-water mixtures for effective extraction of carbohydrate and lipid from algae[J]. Faraday Discuss, 2017, 206: 93-112.
    [34] TO T Q, SHAH K, TREMAIN P, et al. Treatment of lignite and thermal coal with low cost amino acid based ionic liquid-water mixtures[J]. Fuel, 2017, 202: 296-306. doi: 10.1016/j.fuel.2017.04.051
    [35] HERRERA C, COSTA L T, ATILHAN M, et al. Microscopic characterization of amino acid ionic liquids - water mixtures[J]. Journal of Molecular Liquids, 2017, 236: 81-92. doi: 10.1016/j.molliq.2017.04.008
    [36] ZAFARANI-MOATTAR M T, SHEKAARI H, JAFARI P. Evaluation of solute–solvent interactions in aqueous solutions containing cholinium aminoate ionic liquids and polyethylene glycol dimethyl ether as a nontoxic solvent: Thermodynamic and transport studies[J]. Journal of Chemical & Engineering Data, 2019, 64(4): 1322-1337.
    [37] TAGHI ZAFARANI-MOATTAR M, SHEKAARI H, MOSTAFAVI H, et al. Thermodynamic and transport properties of aqueous solutions containing cholinium -alaninate and polyethylene glycol dimethyl ether 250: Evaluation of solute-solvent interactions and phase separation[J]. The Journal of Chemical Thermodynamics, 2019, 132: 9-22. doi: 10.1016/j.jct.2018.12.022
    [38] 齐文爽. [Cnmim][BF4](n=3, 4)水溶液体积及黏度性质研究[D]. 沈阳: 辽宁大学, 2019.
    [39] CAPARICA R, JÚLIO, ANA, BABY, et al. Choline-amino acid ionic liquidsas green functional excipients to enhance drug solubility[J]. Pharmaceutics, 2018, 10(4): 288.
    [40] 王薪薪, 唐少峰, 吕兴梅, 等. 氨基酸季铵离子液体水溶液的密度和黏度[J]. 中国科学: 化学, 2014(6): 1050-1057.
    [41] MÉRIÈM ANOUTI, VIGEANT A, JACQUEMIN J, et al. Volumetric properties, viscosity and refractive index of the protic ionic liquid, pyrrolidinium octanoate, in molecular solvents[J]. The Journal of Chemical Thermodynamics, 2010, 42(7): 834-845. doi: 10.1016/j.jct.2010.01.013
    [42] SHEN M, CHE S, ZHANG Y, et al. Effect of the temperature and coordination atom on the physicochemical properties of chelate-based ionic liquids and their binary mixtures with water[J]. Journal of Chemical & Engineering Data, 2014, 59(12): 3960-3968.
    [43] XU W, COOPER E I, ANGELL C A. Ionic liquids: Ion mobilities, glass temperatures, and fragilities[J]. Journal of Physical Chemistry B, 2003, 107(25): 6170-6178. doi: 10.1021/jp0275894
    [44] JOSÉ C L, GOMES M C, HUSSON P, et al. Polarity, viscosity, and ionic conductivity of liquid mixtures containing [C4C1im][Ntf2] and a molecular component[J]. The Journal of Physical Chemistry B, 2011: 115.
  • 加载中
图(8)表(6)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  83
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-27
  • 网络出版日期:  2021-02-25

胆碱氨基酸离子液体水溶液在T=288.15~323.15 K的传输性质

    作者简介:周宁宁(1996-),女,安徽人,硕士生,研究方向为溶液化学。E-mail:2952910375@qq.com
    通讯作者: 殷天翔, yintx@ecust.edu.cn
  • 华东理工大学化学与分子工程学院,上海 200237

摘要: 合成了两种基于胆碱和氨基酸的离子液体(cholinium-amino acid based ionic liquids,CHAAILs),即胆碱甘氨酸离子液体 [Ch][Gly]和胆碱丙氨酸离子液体[Ch][Ala]。测定了水+ [Ch][Gly]和水+ [Ch][Ala]体系在T=288.15~323.15 K、间隔5 K下的黏度和电导率。黏度和电导率随温度的变化可以分别用Arrhenius方程和VFT方程来描述。水+ CHAAILs混合物的黏度随温度的升高而降低,电导率随温度的升高而升高。用Redlich-Kister方程计算并关联超额黏度(Δη),结果显示出明显的负偏差,且随温度的降低和氨基酸阴离子烷基链长度的增加而增加。水+ CHAAILs混合物的摩尔电导率和黏度间的关系用Walden规则进行了关联,结果显示水+ [Ch][Ala]的二元体系具有较好的离子率。

English Abstract

  • 离子液体(ILs)通常被定义为100 ℃以下的液态盐,是一种具有独特特性的可设计溶剂,如液态范围宽、蒸汽压低、热稳定性和化学稳定性高以及良好的溶剂化行为等[1]。离子液体在萃取分离工艺、CO2捕集、催化、传感器、生物质加工、制药工业等不同领域都有广泛的研究和应用报道[2-10]。离子液体在早期被普遍认为是毒性低、生物降解性好的绿色溶剂。然而,进一步的研究表明,一些含有咪唑基阳离子或卤化物的离子液体表现出的毒性远远高于一些常用的有机溶剂[11-13]。因此,从自然生物材料中开发新型离子液体已成为离子液体进一步应用的重要问题。

    Fukumoto等[14]首次合成了以1-乙基-3-甲基咪唑为阳离子的氨基酸基离子液体,其毒性小,生物降解性好。此外,胆碱是一种无毒、可生物降解的材料,被Garcia-Suarez、Zong和Masci等人用来取代咪唑阳离子[15-17],研究出一种胆碱-氨基酸基离子液体(CHAAILs),对各种细胞[18]几乎无毒,被认为是真正的绿色化学品[19]。学术界对胆碱氨基酸离子液体的理化性质和结构进行了实验和理论研究[17, 20 -23],表明羧酸盐和羟基之间的稳定的离子对促使强氢键的形成。此外,CHAAILs已被成功地用作增强药物溶解性能的绿色功能辅料、酶合成的反应介质、生物传感器、催化、提取分离剂、CO2吸附剂等[24-29]

    黏度和电导率作为传输性质是离子液体工业化的重要物理化学数据,对质量传递速率至关重要,但纯离子液体的高黏度和低电导率往往成为实际应用的障碍。离子液体与传统溶剂混合是构造具有理想物理化学性质的新型液体的有效方法,这种新型液体可以通过简单地改变其组分来控制,它扩大了离子液体的潜在应用。但这需要对离子液体混合物的物理化学性质有更深入和广泛的了解。耿彦芳等[30]测定了咪唑离子液体与乙醇胺复配形成的二元混合物的黏度、电导率以及体系的超额黏度和摩尔电导率等物理化学性质,此低黏度的混合物可用于CO2的吸收。徐金乔等[31]研究了以脯氨酸为阴离子,阳离子为咪唑基的一系列氨基酸离子液体的水溶液在298.15~323.15K的密度,探讨了温度对超额摩尔体积的影响。水是最常用的共溶剂,胆碱氨基酸离子液体与水的混合物已被应用于生物质加工和提取等领域[32-34]。然而,关于胆碱氨基酸离子液体水溶液的理化性质的研究却很少[35-37]。因此,在本工作中,我们合成了两种以甘氨酸和L -丙氨酸为基础的胆碱氨基酸离子液体。测定了这两种CHAAILs及其水溶液的黏度和电导率等传输性质,对指导CHAAILs的设计、合成和作为具有良好流动性的溶剂有着极其重要意义,并有助于揭示CHAAILs作为功能型添加剂在助溶及促渗等方面的应用[38-39]

    • 胆碱氢氧化物(Cho),w=44%水溶液;甘氨酸(Gly),w≥99%;L-丙氨酸(L-Ala),w≥99%。上述原料均购自上海阿拉丁有限公司。水采用超纯水系统(DZG-303A),上海砾鼎水处理有限公司。

    • 胆碱甘氨酸离子液体[Ch][Gly]和胆碱丙氨酸离子液体[Ch][Ala]采用相同的合成过程[15-17]。具体操作如下:反应原料胆碱与氨基酸的物质的量之比1∶1.01,用量筒量取一定体积胆碱溶液,用试管逐滴加入到氨基酸水溶液中,边滴加边在0~5 ℃的水浴锅中搅拌。将混合后的胆碱氨基酸水溶液在水浴温度0~5 ℃的条件下连续搅拌24 h。在50 ℃下,通过旋转蒸发除去混合物中的残余水分,得到一种淡黄色液体的粗产品。将乙腈和甲醇(体积比7∶3)的混合物加入到淡黄色液体中,此混合液在烧杯中用磁子搅拌12 h,反应剩余的氨基酸固体被沉淀出来,通过抽滤被过滤掉。滤液在50 ℃时用旋转蒸发仪除去乙腈和甲醇的混合溶剂,连续3次用甲醇和乙腈的混合物洗涤三次粗产品。将得到的黏稠呈黄色的液体用P2O5粉末在60 ℃真空条件下干燥48 h,进一步去除残留水分。

    • 使用Karl-Fisher水分仪采用库仑法对上述合成的两种离子液体的含水量进行测定,其含水量均小于2000 ppm。采用德国ELEMENTAR VARIO El Ⅲ型元素分析仪对产物进行元素分析。元素分析的计算值和实验值分别为[Ch][Gly] (计算值:C 47.17%; N 15.72%; H 10.18%;实验值:C 47.21%; N 15.65%; H 10.21%); [Ch][Ala] (计算值:C 49.98%; N 14.57%; H 10.49%;实验值:C 49.90%; N 14.50%; H 10.53%)。使用瑞士布鲁克公司AVANCE Ⅲ 400 型核磁共振仪对两种CHAAILs进行测定,其1H-NMR和13C-NMR表征结果如下:

      图  1  (a) [Ch][Gly] 和 (b) [Ch][Ala] 的1H NMR (400 MHz, D2O)谱图

      Figure 1.  1H NMR (400 MHz, D2O) spectra for (a) [Ch][Gly] and (b) [Ch][Ala]

      图  2  (a) [Ch][Gly] 和 (b) [Ch][Ala] 的13C-NMR (400 MHz, D2O)谱图

      Figure 2.  13C-NMR (400 MHz, D2O) spectra for (a) [Ch][Gly] and (b) [Ch][Ala]

      通过核磁共振氢谱和碳谱分析,没有发现明显杂质峰,说明所得为目标产物[Ch][Gly]和[Ch][Gly]。

    • 采用重量法配制全浓度范围内即摩尔分数(x1=0~1.0000)的[Ch][Gly] +水和[Ch][Ala] +水的二元混合物。电子分析天平的精确度为0.1mg,配制好后立即塞上瓶塞,密封,放在磁力搅拌器上搅拌,直至混合均匀,搅拌时长约12 h,待用。配制好的混合物使用雷磁公司(DDSJ-307,中国上海)提供的数字式电导率仪进行电导率测定。电导率仪最初用浓度为0.01 mol/L的标准KCl溶液进行校准。电导率测定的不确定度估计为0.5%。二元混合物的黏度使用由衡平公司(型号:SNB-2,中国上海)提供的数字式旋转黏度计测定。黏度测定的总相对不确定度小于3%。所有测定均在不同温度下进行,温度稳定性约为±0.1 K。

    • 不同摩尔分数、不同温度下的CHAAILs-H2O混合物的黏度和超额黏度值列于表1表2

      x1η/
      (mPa·s)
      Δη/
      (mPa·s)
      η/
      (mPa·s)
      Δη/
      (mPa·s)
      η/
      (mPa·s)
      Δη/
      (mPa·s)
      η/
      (mPa·s)
      Δη/
      (mPa·s)
      η/
      (mPa·s)
      Δη/
      (mPa·s)
      η/
      (mPa·s)
      Δη/
      (mPa·s)
      η/
      (mPa·s)
      Δη/
      (mPa·s)
      η/
      (mPa·s)
      Δη/
      (mPa·s)
      288.15 K293.15 K298.15 K303.15 K 308.15 K313.15 K318.15 K323.15 K
      1368102621018840125408320603046603450
      0.90232549−7721931−4351346−355934−197716−35489−55361−60280−31
      0.79971886−10581464−633972−535693−310493−172382−100300−73228−47
      0.69931162−13021012−743664−597461−378358−199272−132215−98159−71
      0.599857−1348660−911502−627353−399256−243196−165155−124117−90
      0.4998563−1278474−837347−595248−379179−237136−166111−12388−85
      0.3998316−1156239−810183−571137−364103−23084−15867−12056−83
      0.2995121−982100−68677−48858−31849−20140−14134−10628−75
      0.200365−67356−47045−33337−21429−13826−9622−7219−50
      0.09878−3577−2536−1815−1204−784−563−433−32
      01.08700.99700.89100.79800.71700.65000.59900.5480

      表 1  不同摩尔分数[Ch][Gly](1) +水(2)二元混合物溶液在T = 288.15~323.15 K的黏度η和超额黏度Δη

      Table 1.  Viscosities η and excess viscosities Δη of binary mixtures [Ch][Gly](1) + water(2) with various mole fractions x1 of ILs at T = 288.15—323.15 K1)

      x1η/
      (mPa·s)
      Δη/
      (mPa·s)
      η/
      (mPa·s)
      Δη/
      (mPa·s)
      η/
      (mPa·s)
      Δη/
      (mPa·s)
      η/
      (mPa·s)
      Δη/
      (mPa·s)
      η/
      (mPa·s)
      Δη/
      (mPa·s)
      η/
      (mPa·s)
      Δη/
      (mPa·s)
      η/
      (mPa·s)
      Δη/
      (mPa·s)
      η/
      (mPa·s)
      Δη/
      (mPa·s)
      288.15 K293.15 K298.15 K303.15 K 308.15 K313.15 K318.15 K323.15 K
      1474803601022450149309940728052303810
      0.93465−8092468−7731667−3531135−209776−118561−94404−67299−44
      0.79672545−12381807−10621163−626808−382591−201421−159305−111228−76
      0.68851752−15181234−1246826−720580−449409−275309−193228−132171−91
      0.60231307−1553899−1271612−741424−475308−291233−206171−144134−96
      0.4801780−1500548−1181384−694274−443197−280148−202113−13888−95
      0.4006515−1388361−1083256−644187−411137−261104−18881−12966−87
      0.3201307−1214222−931158−561116−36390−22970−16356−11245−77
      0.2072101−88473−67456−41043−26735−17128−12323−8619−60
      0.085111−3947−3006−1865−1234−814−593−423−30
      01.08700.99700.89100.79800.71700.65000.59900.5480
      1) Standard uncertainty is u(T) = 0.1K; The relative standard uncertainties are ur(x1) = 0.0001, ur(η) = 0.05, and urη) = 0.08, respectively

      表 2  不同摩尔分数[Ch][Ala](1)+水(2)二元混合物溶液在T = 288.15~323.15 K的黏度η和超额黏度Δη

      Table 2.  Viscosities η and excess viscosities Δη of binary mixtures [Ch][Ala](1) + water(2) with various mole fractions x1 of ILs at T = 288.15—323.15 K1)

      图3所示,两种离子液体混合物的全浓度范围内的的黏度随温度的变化趋势是相似的,即黏度随温度的升高而降低,在离子液体较高摩尔分数下的混合物此性质表现更为明显。

      图  3  不同摩尔分数x1的[Ch][Gly] +水(a)和[Ch][Ala] +水(b)二元混合物溶液在T =288.15~323.15 K的黏度η

      Figure 3.  Viscosities η of binary mixtures of (a)[Ch][Gly] + water and (b) [Ch][Ala]+water of various mole fractions x1 of IL at T = 288.15–323.15 K

      黏度与温度的依赖关系可以用Arrhenius方程来描述:

      式中,T(K)为温度; a、b为可调参数。通过Arrhenius方程拟合实验值,得到可调参数的值及方程的拟合偏差(SD)见表3SD的计算公式如下:

      Mixturex1abSD
      [Ch][Gly](1)+water(2)11464460.043
      0.9023−1360190.022
      0.7997−1257400.046
      0.6993−1254580.061
      0.599−1253940.033
      0.4998−1251940.054
      0.3998−1146980.028
      0.2995−939170.032
      0.2003−833810.03
      0.0987−725480.007
      [Ch][Ala](1)+water(2)1−1569010.048
      0.9−1566230.022
      0.7967−1564700.027
      0.6885−1462220.027
      0.6023−1460970.036
      0.4801−1458450.029
      0.4006−1355350.037
      0.3201−1251140.042
      0.2072−1143530.037
      0.0851−829330.033

      表 3  [Ch][Gly] +水和 [Ch][Ala] +水混合物分别在T = 288.15~323.15 K下黏度的可调整参数a,b和方程的拟合偏差(SD)

      Table 3.  Adjustable parameters a and b in Arrhenius equation for viscosities and SD of the fittings of the binary mixtures [Ch][Gly] + water and [Ch][Ala] + water at different mole fractions x1 of ILs

      其中ZΔη;ZexpZcal分别为实验值和拟合计算值;np分别为实验数据点和拟合参数的个数。拟合计算值的结果以实线的形式显示在图4中,实验值与拟合计算值吻合良好。

      图  4  二元体系的黏度实验值与Arrhenius方程(实线)计算值的比较

      Figure 4.  Comparison of the experimental values of viscosities and those calculated by the Arrhenius equation (solid lines) of the binary systems

      根据不同摩尔分数的[Ch][Gly] +水和[Ch][Ala] +水的实验黏度值,由式(3)计算出超额黏度:

      其中x1x2分别为组分1和组分2的摩尔分数,下标1和2分别表示离子液体和水;η1η2和Δη分别是离子液体、水和混合物的黏度。在T = 288.15~323.15 K温度范围内的超额黏度经Redlich−Kister多项式拟合:

      其中Ai (i= 0,1,2,3)为可调参数,n为多项式级数,对于本实验黏度偏差数据,在误差范围内, n=3已足够描述黏度偏差随组成的变化。各温度下的可调参数Ai和拟合偏差(SD)列于表4中。结果表明,[Ch][Gly] +水和[Ch][Ala] +水二元混合物在温度288.15 K到323.15 K范围内的4个可调参数A0A1 A2 A3和Redlich - Kister方程吻合良好。

      MixtureT/KA0A1A2A3SD
      [Ch][Gly](1)+water(2)288.15−51491397−955163964
      293.15−3440346−352147035
      298.15−2433526−870120810
      303.15−1565327−3193868
      308.15−992197294−55217
      313.15−670−311284
      318.15−492−66−112517
      323.15−352−334−484
      [Ch][Ala](1)+water(2)288.15−60801746−139989613
      293.15−47861722−1901161122
      298.15−28571105−699−11812
      303.15−1829656−324−2457
      308.15−1148314−24−2824
      313.15−813202−135−241
      318.15−558144−120−212
      323.15−37999−95−451

      表 4  [Ch][Gly] +水和 [Ch][Ala] +水二元体系分别在T = 288.15~323.15 K下黏度的可调整参数a,b和方程的拟合偏差(SD)

      Table 4.  Adjustable parameter values Ai (i=0,1, 2, 3) and SD of excess viscosities for [Ch][Gly] + water mixtures and [Ch][Ala] + water mixtures by the Redlich-Kister equation at T = 288.15—323.15 K

      图5所示,实验得到的超额黏度值和Redlich-Kister方程的拟合结果,两者吻合较好。此外,这两种ILs与水形成的混合物都与理想值有负偏差。这种偏差随着温度的升高而减小。比较这两种ILs的混合物时,水+ [Ch][Ala]的混合物表现出更大的偏差。

      图  5  (a) [Ch][Gly] +水混合物和(b) [Ch][Ala] +水混合物在不同温度下的超额黏度

      Figure 5.  Excess viscosities of binary mixtures for (a) [Ch][Gly] + water mixtures and (b) [Ch][Ala] + water mixtures at various temperatures

      当水加入到离子液体中时,黏度急剧下降。这一现象表明,说明溶剂的加入对于黏度的改善有着极其显著的作用。水跟离子液体阴离子之间形成了氢键作用, 减弱了离子液体阴阳离子之间的离子键作用, 导致超额黏度呈现负偏差[40]。此外,由于离子液体的黏度远大于溶剂的黏度,黏度随着溶剂含量的增加而迅速降低,当混合体系的实际黏度远小于理想体系的黏度时,会导致整体呈负偏差。CHAAILs+H2O二元体系的超额黏度在温度288.15~323.15K下的Δη图5所示,随着温度的上升,溶液的流动性增大,超额黏度下降的幅度逐渐减小。这说明分子间的运动与温度有直接的联系,即随着实验温度的升高,热运动逐渐加剧,体系趋向于向理想溶液体系的行为改变[41-42]。 CHAAILs+H2O二元混合体系混合黏度的变化在全浓度的范围内,呈现为U型在x = 0.6左右时有一个极值。|Δη|按照离子液体阴离子烷基链降低而减小的顺序为[Ch][Ala]> [Ch][Gly]。

    • 不同摩尔分数、不同温度下的CHAAILs +水混合物的电导率值列于表5。摩尔导率Λ作为体积浓度的函数c近一步计算并显示在图6

      Mixturex1κ/mS·cm-1
      288.15K 293.15K298.15K303.15K308.15K313.15K318.15K323.15K
      [Ch][Ala](1)+water(2)1.00000.1160.1730.2680.3750.5120.6450.8791.081
      0.90230.1320.240.3460.5550.760.9881.2411.597
      0.79970.2560.3910.5480.7931.0661.3831.7492.226
      0.69930.3870.5430.7571.0321.3711.7692.2652.865
      0.5990.480.6750.9231.2491.6572.162.7053.41
      0.49980.8351.1461.542.032.6233.3174.1035.042
      0.39981.2121.652.22.8553.6654.5555.636.795
      0.29951.5132.042.713.534.4355.516.6858.12
      0.20031.882.533.354.335.436.78.149.81
      0.098715.8418.55521.725.0528.6532.536.4540.75
      00.000460.00290.002960.003020.004110.00460.005040.00515
      [Ch][Ala](1)+water(2)1.00000.0620.0990.150.2290.330.460.6290.852
      0.90000.0860.1330.2050.3010.4290.5910.7971.052
      0.79670.1230.1890.2890.4160.5880.7941.0591.391
      0.68850.1810.2820.410.5840.8151.0821.4321.857
      0.60230.2430.3680.5340.7591.0421.3851.8092.315
      0.48010.390.5770.8261.1461.5462.052.633.4
      0.40060.5630.8261.161.5752.032.43.164.23
      0.32010.8861.2431.692.152.753.74.65.65
      0.20721.6252.242.983.864.876.087.499.15
      0.085112.414.8317.6422.526.531.13539
      00.000460.00290.002960.003020.004110.00460.005040.00515
      1)The relative standard uncertainties are ur(x1)= 0.0001 and ur(κ) = 0.008, respectively

      表 5  CHAAILs+水二元混合物在不同温度下的电导率κ

      Table 5.  Electrical conductivities κ of [Ch][AA]- water binary mixtures at different temperatures 1)

      图  6  二元混合物(a) [Ch][Gly] +水混合物 and (b) [Ch][Ala] +水混合物的摩尔电导率Λ随体积浓度c的变化

      Figure 6.  Mole conductivity Λ as a function of volumetric concentration c of IL for binary mixtures of (a) [Ch][Gly] + water mixtures and (b) [Ch][Ala] + water mixtures

      图6可以看出,离子液体二元混合物的摩尔电导率与传统电解质的电导率具有相似的浓度依赖性,即随着离子液体浓度的增加,摩尔电导率降低。黏度与摩尔电导率的关系可以用Walden规则表示:

      其中Λ是摩尔电导率;η是黏度,K为常数。CHAAILs-H2O混合物lgΛ和lgη−1的关系如图7所示, 由于0.01 mol/L KCl水溶液是完全解离的,以0.01 mol/L KCl水溶液黏度和摩尔电导关系图作为参考线。其用以模拟无相互作用的离子电导率和流动性的形态。在该理想曲线以下的溶液,其离子性均不太理想并且随着与理想曲线的距离的变大而逐渐变差[42-43]。由此可以推测,[Ch][Ala]在水中的电离度比[Ch][Gly]大。

      图  7  不同摩尔分数的离子液体 (a) [Ch][Gly] +水二元混合物和(b) [Ch][Ala] + 水二元混合物的lg Λ和 lg η−1之间的关系

      Figure 7.  Relationships of lg Λ and lg η−1 of binary mixtures of (a) [Ch][Gly] + water and (b) [Ch][Ala] + water with different mole fractions of IL

      此外,从表4还可以看出,电导率随着温度的升高而升高,这可以用Vogel-Fulcher-Tamman (VFT)方程来描述:

      κ表示电导率,κ0A4T0是拟合参数,T为开尔文温度,采用最小二乘拟合方法线性回归分析估计拟合参数,并与标准偏差(SD)一起列于表6,拟合结果与实验结果如图8所示。

      Mixturex1κ0A4/KT0/KSD
      [Ch][Ala](1)+water(2)11635692100.014
      0.9023563072370.02
      0.79973575972060.009
      0.6993396311671620.006
      0.599253210081710.013
      0.499815438361770.227
      0.399811527121840.012
      0.299511896941840.024
      0.200311936571860.018
      0.098714435941560.049
      [Ch][Ala](1)+water(2)1535313321710.003
      0.914149731880.001
      0.796716879781850.004
      0.688520019841820.05
      0.602311628171920.002
      0.4801500311231690.013
      0.400613176323141000.105
      0.3201766512331520.06
      0.207231709051680.025
      0.08514222472190.058

      表 6  离子液体不同摩尔分数x1下[Ch][Gly] +水和[Ch][Ala] +水二元混合物电导率的VFT方程拟合参数

      Table 6.  Fitting parameters of VFT equation for conductivity for binary mixtures [Ch][Gly] + water and [Ch][Ala] + water at different molar fractions x1 of ILs.

      图  8  CHAAILs+水二元混合物电导率VFT方程的拟合曲线

      Figure 8.  Electrical conductivities by VFT equation of the binary mixtures CHAAILs + water

    • 以氢氧化胆碱和氨基酸为原料, 通过酸碱中和反应得到了胆碱氨基酸类离子液体, 并对其结构进行了表征, 表征结果与目标产物结构相符。测定了两种胆碱氨基酸型离子液体在 288.15~323.15 K范围内的水溶液的黏度和电导率。黏度和电导率随温度的变化可以分别用Arrhenius方程和VFT方程来描述,CHAAILs+H2O混合物的黏度随温度升高而降低,电导率随温度升高而升高。另外,采用 Redlich-Kister 方程对溶液的超额性质进行了关联。 离子液体水溶液的黏度性质主要受离子液体与水之间形成的氢键作用的影响,显示出了明显的负偏差。离子液体的溶液体系的摩尔电导率和黏度间的关系用Walden曲线进行了关联,结果显示[Ch][Ala]与水的二元体系具有较好的离子率。本文对CHAAILs水溶液的传输性质(黏度和电导率)的研究将为此类离子液体的应用提供更好的理论基础。

(8)  表(6) 参考文献 (44)

目录

    /

    返回文章