高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

胆碱氨基酸离子液体水溶液在T=288.15~323.15 K的传输性质

周宁宁 殷天翔

周宁宁, 殷天翔. 胆碱氨基酸离子液体水溶液在T=288.15~323.15 K的传输性质[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20201227001
引用本文: 周宁宁, 殷天翔. 胆碱氨基酸离子液体水溶液在T=288.15~323.15 K的传输性质[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20201227001
ZHOU Ningning, YIN Tianxiang. Transport Properties of Aqueous Solution of Choline-amino Acid Based Ionic Liquid in the Temperature Range 288.15—323.15K[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20201227001
Citation: ZHOU Ningning, YIN Tianxiang. Transport Properties of Aqueous Solution of Choline-amino Acid Based Ionic Liquid in the Temperature Range 288.15—323.15K[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20201227001

胆碱氨基酸离子液体水溶液在T=288.15~323.15 K的传输性质

doi: 10.14135/j.cnki.1006-3080.20201227001
基金项目: 国家自然科学基金(21773063,21373085)
详细信息
    作者简介:

    周宁宁(1996-),女,安徽人,硕士生,研究方向为溶液化学。E-mail:2952910375@qq.com

    通讯作者:

    殷天翔,E-mail address:yintx@ecust.edu.cn

  • 中图分类号: O64

Transport Properties of Aqueous Solution of Choline-amino Acid Based Ionic Liquid in the Temperature Range 288.15—323.15K

  • 摘要: 合成了两种基于胆碱和氨基酸的离子液体(cholinium-amino acid based ionic liquids,CHAAILs),即胆碱甘氨酸离子液体 [Ch][Gly]和胆碱丙氨酸离子液体[Ch][Ala]。测定了水+ [Ch][Gly]和水+ [Ch][Ala]体系在T=288.15~323.15 K、间隔5 K下的黏度和电导率。黏度和电导率随温度的变化可以分别用Arrhenius方程和VFT方程来描述。水+ CHAAILs混合物的黏度随温度的升高而降低,电导率随温度的升高而升高。用Redlich-Kister方程计算并关联超额黏度(Δη),结果显示出明显的负偏差,且随温度的降低和氨基酸阴离子烷基链长度的增加而增加。水+ CHAAILs混合物的摩尔电导率和黏度间的关系用Walden规则进行了关联,结果显示水+ [Ch][Ala]的二元体系具有较好的离子率。

     

  • 图  1  (a) [Ch][Gly] 和 (b) [Ch][Ala] 的1H NMR (400 MHz, D2O)谱图

    [Ch] [Gly]: 1H-NMR (400MHz, D2O), δ: 3.05 (2H, s, CH2NH2), 3.09 (9H, s, (CH3)3N), 3.40~3.42 (2H, m, CH2OH), 3.94~3.97 (2H, m, CH2CH2N); [Ch][Ala]: 1H-NMR (400MHz, D2O), δ: 1.13~1.15 (3H, d, CH3CH), 3.09 (9H, s, (CH3)3N), 3.21~3.27 (1H, q, CHNH2), 3.40~3.42 (2H, m, CH2OH), 3.94~3.97 (2H, m, CH2CH2N)。

    Figure  1.  1H NMR (400 MHz, D2O) spectra for (a) [Ch][Gly] and (b) [Ch][Ala]

    图  2  (a) [Ch][Gly] 和 (b) [Ch][Ala] 的13C-NMR (400 MHz, D2O)谱图

    Figure  2.  13C-NMR (400 MHz, D2O) spectra for (a) [Ch][Gly] and (b) [Ch][Ala]

    图  3  不同摩尔分数x1的[Ch][Gly] +水(a)和[Ch][Ala] +水(b)二元混合物溶液在T =288.15~323.15 K的黏度η

    Figure  3.  Viscosities η of binary mixtures of (a)[Ch][Gly] + water and (b) [Ch][Ala]+water of various mole fractions x1 of IL at T = 288.15–323.15 K

    图  4  二元体系的黏度实验值与Arrhenius方程(实线)计算值的比较

    Figure  4.  Comparison of the experimental values of viscosities and those calculated by the Arrhenius equation (solid lines) of the binary systems

    图  5  (a) [Ch][Gly] +水混合物和(b) [Ch][Ala] +水混合物在不同温度下的超额黏度

    Figure  5.  Excess viscosities of binary mixtures for (a) [Ch][Gly] + water mixtures and (b) [Ch][Ala] + water mixtures at various temperatures

    图  6  二元混合物(a) [Ch][Gly] +水混合物 and (b) [Ch][Ala] +水混合物的摩尔电导率Λ随体积浓度c的变化

    Figure  6.  Mole conductivity Λ as a function of volumetric concentration c of IL for binary mixtures of (a) [Ch][Gly] + water mixtures and (b) [Ch][Ala] + water mixtures

    图  7  不同摩尔分数的离子液体 (a) [Ch][Gly] +水二元混合物和(b) [Ch][Ala] + 水二元混合物的lg Λ和 lg η−1之间的关系

    Figure  7.  Relationships of lg Λ and lg η−1 of binary mixtures of (a) [Ch][Gly] + water and (b) [Ch][Ala] + water with different mole fractions of IL

    图  8  CHAAILs+水二元混合物电导率VFT方程的拟合曲线

    Figure  8.  Electrical conductivities by VFT equation of the binary mixtures CHAAILs + water

    表  1  不同摩尔分数[Ch][Gly](1) +水(2)二元混合物溶液在T = 288.15~323.15 K的黏度η和超额黏度Δη

    Table  1.   Viscosities η and excess viscosities Δη of binary mixtures [Ch][Gly](1) + water(2) with various mole fractions x1 of ILs at T = 288.15—323.15 K1)

    x1η/
    (mPa·s)
    Δη/
    (mPa·s)
    η/
    (mPa·s)
    Δη/
    (mPa·s)
    η/
    (mPa·s)
    Δη/
    (mPa·s)
    η/
    (mPa·s)
    Δη/
    (mPa·s)
    η/
    (mPa·s)
    Δη/
    (mPa·s)
    η/
    (mPa·s)
    Δη/
    (mPa·s)
    η/
    (mPa·s)
    Δη/
    (mPa·s)
    η/
    (mPa·s)
    Δη/
    (mPa·s)
    288.15 K293.15 K298.15 K303.15 K 308.15 K313.15 K318.15 K323.15 K
    1368102621018840125408320603046603450
    0.90232549−7721931−4351346−355934−197716−35489−55361−60280−31
    0.79971886−10581464−633972−535693−310493−172382−100300−73228−47
    0.69931162−13021012−743664−597461−378358−199272−132215−98159−71
    0.599857−1348660−911502−627353−399256−243196−165155−124117−90
    0.4998563−1278474−837347−595248−379179−237136−166111−12388−85
    0.3998316−1156239−810183−571137−364103−23084−15867−12056−83
    0.2995121−982100−68677−48858−31849−20140−14134−10628−75
    0.200365−67356−47045−33337−21429−13826−9622−7219−50
    0.09878−3577−2536−1815−1204−784−563−433−32
    01.08700.99700.89100.79800.71700.65000.59900.5480
    下载: 导出CSV

    表  2  不同摩尔分数[Ch][Ala](1)+水(2)二元混合物溶液在T = 288.15~323.15 K的黏度η和超额黏度Δη

    Table  2.   Viscosities η and excess viscosities Δη of binary mixtures [Ch][Ala](1) + water(2) with various mole fractions x1 of ILs at T = 288.15—323.15 K1)

    x1η/
    (mPa·s)
    Δη/
    (mPa·s)
    η/
    (mPa·s)
    Δη/
    (mPa·s)
    η/
    (mPa·s)
    Δη/
    (mPa·s)
    η/
    (mPa·s)
    Δη/
    (mPa·s)
    η/
    (mPa·s)
    Δη/
    (mPa·s)
    η/
    (mPa·s)
    Δη/
    (mPa·s)
    η/
    (mPa·s)
    Δη/
    (mPa·s)
    η/
    (mPa·s)
    Δη/
    (mPa·s)
    288.15 K293.15 K298.15 K303.15 K 308.15 K313.15 K318.15 K323.15 K
    1474803601022450149309940728052303810
    0.93465−8092468−7731667−3531135−209776−118561−94404−67299−44
    0.79672545−12381807−10621163−626808−382591−201421−159305−111228−76
    0.68851752−15181234−1246826−720580−449409−275309−193228−132171−91
    0.60231307−1553899−1271612−741424−475308−291233−206171−144134−96
    0.4801780−1500548−1181384−694274−443197−280148−202113−13888−95
    0.4006515−1388361−1083256−644187−411137−261104−18881−12966−87
    0.3201307−1214222−931158−561116−36390−22970−16356−11245−77
    0.2072101−88473−67456−41043−26735−17128−12323−8619−60
    0.085111−3947−3006−1865−1234−814−593−423−30
    01.08700.99700.89100.79800.71700.65000.59900.5480
    1) Standard uncertainty is u(T) = 0.1K; The relative standard uncertainties are ur(x1) = 0.0001, ur(η) = 0.05, and urη) = 0.08, respectively
    下载: 导出CSV

    表  3  [Ch][Gly] +水和 [Ch][Ala] +水混合物分别在T = 288.15~323.15 K下黏度的可调整参数a,b和方程的拟合偏差(SD)

    Table  3.   Adjustable parameters a and b in Arrhenius equation for viscosities and SD of the fittings of the binary mixtures [Ch][Gly] + water and [Ch][Ala] + water at different mole fractions x1 of ILs

    Mixturex1abSD
    [Ch][Gly](1)+water(2)11464460.043
    0.9023−1360190.022
    0.7997−1257400.046
    0.6993−1254580.061
    0.599−1253940.033
    0.4998−1251940.054
    0.3998−1146980.028
    0.2995−939170.032
    0.2003−833810.03
    0.0987−725480.007
    [Ch][Ala](1)+water(2)1−1569010.048
    0.9−1566230.022
    0.7967−1564700.027
    0.6885−1462220.027
    0.6023−1460970.036
    0.4801−1458450.029
    0.4006−1355350.037
    0.3201−1251140.042
    0.2072−1143530.037
    0.0851−829330.033
    下载: 导出CSV

    表  4  [Ch][Gly] +水和 [Ch][Ala] +水二元体系分别在T = 288.15~323.15 K下黏度的可调整参数a,b和方程的拟合偏差(SD)

    Table  4.   Adjustable parameter values Ai (i=0,1, 2, 3) and SD of excess viscosities for [Ch][Gly] + water mixtures and [Ch][Ala] + water mixtures by the Redlich-Kister equation at T = 288.15—323.15 K

    MixtureT/KA0A1A2A3SD
    [Ch][Gly](1)+water(2)288.15−51491397−955163964
    293.15−3440346−352147035
    298.15−2433526−870120810
    303.15−1565327−3193868
    308.15−992197294−55217
    313.15−670−311284
    318.15−492−66−112517
    323.15−352−334−484
    [Ch][Ala](1)+water(2)288.15−60801746−139989613
    293.15−47861722−1901161122
    298.15−28571105−699−11812
    303.15−1829656−324−2457
    308.15−1148314−24−2824
    313.15−813202−135−241
    318.15−558144−120−212
    323.15−37999−95−451
    下载: 导出CSV

    表  5  CHAAILs+水二元混合物在不同温度下的电导率κ

    Table  5.   Electrical conductivities κ of [Ch][AA]- water binary mixtures at different temperatures 1)

    Mixturex1κ/mS·cm-1
    288.15K 293.15K298.15K303.15K308.15K313.15K318.15K323.15K
    [Ch][Ala](1)+water(2)1.00000.1160.1730.2680.3750.5120.6450.8791.081
    0.90230.1320.240.3460.5550.760.9881.2411.597
    0.79970.2560.3910.5480.7931.0661.3831.7492.226
    0.69930.3870.5430.7571.0321.3711.7692.2652.865
    0.5990.480.6750.9231.2491.6572.162.7053.41
    0.49980.8351.1461.542.032.6233.3174.1035.042
    0.39981.2121.652.22.8553.6654.5555.636.795
    0.29951.5132.042.713.534.4355.516.6858.12
    0.20031.882.533.354.335.436.78.149.81
    0.098715.8418.55521.725.0528.6532.536.4540.75
    00.000460.00290.002960.003020.004110.00460.005040.00515
    [Ch][Ala](1)+water(2)1.00000.0620.0990.150.2290.330.460.6290.852
    0.90000.0860.1330.2050.3010.4290.5910.7971.052
    0.79670.1230.1890.2890.4160.5880.7941.0591.391
    0.68850.1810.2820.410.5840.8151.0821.4321.857
    0.60230.2430.3680.5340.7591.0421.3851.8092.315
    0.48010.390.5770.8261.1461.5462.052.633.4
    0.40060.5630.8261.161.5752.032.43.164.23
    0.32010.8861.2431.692.152.753.74.65.65
    0.20721.6252.242.983.864.876.087.499.15
    0.085112.414.8317.6422.526.531.13539
    00.000460.00290.002960.003020.004110.00460.005040.00515
    1)The relative standard uncertainties are ur(x1)= 0.0001 and ur(κ) = 0.008, respectively
    下载: 导出CSV

    表  6  离子液体不同摩尔分数x1下[Ch][Gly] +水和[Ch][Ala] +水二元混合物电导率的VFT方程拟合参数

    Table  6.   Fitting parameters of VFT equation for conductivity for binary mixtures [Ch][Gly] + water and [Ch][Ala] + water at different molar fractions x1 of ILs.

    Mixturex1κ0A4/KT0/KSD
    [Ch][Ala](1)+water(2)11635692100.014
    0.9023563072370.02
    0.79973575972060.009
    0.6993396311671620.006
    0.599253210081710.013
    0.499815438361770.227
    0.399811527121840.012
    0.299511896941840.024
    0.200311936571860.018
    0.098714435941560.049
    [Ch][Ala](1)+water(2)1535313321710.003
    0.914149731880.001
    0.796716879781850.004
    0.688520019841820.05
    0.602311628171920.002
    0.4801500311231690.013
    0.400613176323141000.105
    0.3201766512331520.06
    0.207231709051680.025
    0.08514222472190.058
    下载: 导出CSV
  • [1] DUPONT J. From molten salts to ionic liquids: A “nano”journey[J]. Accounts of Chemical Research, 2011, 44(11): 1223-1231. doi: 10.1021/ar2000937
    [2] ZENG S J, ZHANG X P, LU B. Ionic-liquid-based CO2 capture systems: Structure, interaction and process[J]. Chemical Reviews, 2017, 117(14): 9625-9673. doi: 10.1021/acs.chemrev.7b00072
    [3] 于方圆, 周莉, 何妍, 彭昌军, 等. 离子液体修饰的三蝶烯多孔材料用于去除水溶液中阴离子染料[J]. 华东理工大学学报(自然科学版), 2020(02): 155-163.
    [4] BERTHOD A, RUIZ-ANGEL M J, CARDA-BROCH S. Recent advances on ionic liquid uses in separation techniques[J]. Journal of Chromatography A, 2018, 1559: 2-16. doi: 10.1016/j.chroma.2017.09.044
    [5] VENTURA S P M, FA E S, QUENTAL M V, et al. Ionic-liquid-mediated extraction and separation processes for bioactive compounds: Past, present, and future trends[J]. Chemical Reviews, 2017, 117(10): 6984-7052. doi: 10.1021/acs.chemrev.6b00550
    [6] ABO-HAMAD A, ALSAADI M A, HAYYAN M, et al. Ionic liquid-carbon nanomaterial hybrids for electrochemical sensor applications: A review[J]. Electrochimica Acta, 2016, 193: 321-343. doi: 10.1016/j.electacta.2016.02.044
    [7] VAFAEEZADEH M, ALINEZHAD H. Brønsted acidic ionic liquids: Green catalysts for essential organic reactions[J]. Journal of Molecular Liquids, 2016, 218: 95-105. doi: 10.1016/j.molliq.2016.02.017
    [8] WANG H, GURAU G, ROGERS R D. Ionic liquid processing of cellulose[J]. Chemical Society Reviews, 2012, 41(4): 1519-1537. doi: 10.1039/c2cs15311d
    [9] ZHANG Q, SHREEVE J M. Ionic liquid propellants: Future fuels for space propulsion[J]. Chemistry, 2013, 19(46): 15446-15451. doi: 10.1002/chem.201303131
    [10] EGOROVA K S, ANANIKOV V P. Fundamental importance of ionic interactions in the liquid phase: A review of recent studies of ionic liquids in biomedical and pharmaceutical applications[J]. Journal of Molecular Liquids, 2018, 272: 271-300. doi: 10.1016/j.molliq.2018.09.025
    [11] GARCIA M T, GATHERGOOD N, SCAMMELLS P J. Biodegradable ionic liquids: Part II. Effect of the anion and toxicology[J]. Green Chemistry, 2005, 7(1): 9-14. doi: 10.1039/b411922c
    [12] GOUVEIA W, JORGE T F, MARTINS S, et al. Toxicity of ionic liquids prepared from biomaterials[J]. Chemosphere, 2014, 104: 51-56. doi: 10.1016/j.chemosphere.2013.10.055
    [13] HECKENBACH M E, ROMERO F N, GREEN M D, et al. Meta-analysis of ionic liquid literature and toxicology[J]. Chemosphere, 2016, 150: 266-274. doi: 10.1016/j.chemosphere.2016.02.029
    [14] KENTA F M Y, HIROYUKI O. Room temperature ionic liquids from 20 natural amino acids[J]. Journal of the American Chemical Society, 2005, 127: 2398-2399. doi: 10.1021/ja043451i
    [15] MORIEL P, GARCÍA-SUÁREZ E J, MARTÍNEZ M, et al. Synthesis, characterization, and catalytic activity of ionic liquids based on biosources[J]. Tetrahedron Letters, 2010, 51(37): 4877-4881. doi: 10.1016/j.tetlet.2010.07.060
    [16] LIU Q P, HOU X D, LI N, et al. Ionic liquids from renewable biomaterials: synthesis, characterization and application in the pretreatment of biomass[J]. Green Chem, 2012, 14(2): 304-307. doi: 10.1039/C2GC16128A
    [17] DE SANTIS S, MASCI G, CASCIOTTA F, et al. Cholinium-amino acid based ionic liquids: A new method of synthesis and physico-chemical characterization[J]. Physical Chemistry Chemical Physics, 2015, 17(32): 20687-20698. doi: 10.1039/C5CP01612F
    [18] YAZDANI A, SIVAPRAGASAM M, LEVEQUE J M, et al. Microbial biocompatibility and biodegradability of choline-amino acid based ionic liquids[J]. Journal of Microbial & Biochemical Technology, 2016, 8(5): 415-421.
    [19] HOU X D, LIU Q P, SMITH T J, et al. Evaluation of toxicity and biodegradability of cholinium amino acids ionic liquids[J]. PLoS One, 2013, 8(3): e59145. doi: 10.1371/journal.pone.0059145
    [20] TAO D J, CHENG Z, CHEN F F, et al. Synthesis and thermophysical properties of biocompatible cholinium-based amino acid ionic liquids[J]. Journal of Chemical & Engineering Data, 2013, 58(6): 1542-1548.
    [21] DEL OLMO L, LAGE-ESTEBANEZ I, LOPEZ R, et al. Understanding the structure and properties of cholinium amino acid based ionic liquids[J]. Journal of Physical Chemistry B, 2016, 120(39): 10327-10335. doi: 10.1021/acs.jpcb.6b06969
    [22] CAPARICA R, JULIO A, BABY A R, et al. Choline-amino acid ionic liquids as green functional excipients to enhance drug solubility[J]. Pharmaceutics, 2018, 10(4): 288. doi: 10.3390/pharmaceutics10040288
    [23] MOOSAVI M, BANAZADEH N, TORKZADEH M. Structure and dynamics in amino acid choline-based ionic liquids: A combined QTAIM, NCI, DFT, and molecular dynamics study[J]. Journal of Physical Chemistry B, 2019, 123(18): 4070-4084. doi: 10.1021/acs.jpcb.9b01799
    [24] ZHANG L. Pharmacokinetics and drug delivery systems for puerarin, a bioactive flavone from traditional Chinese medicine[J]. Drug Delivery, 2019, 26(1): 860-869. doi: 10.1080/10717544.2019.1660732
    [25] ZAPPI D, CAMINITI R, INGO G M, et al. Biologically friendly room temperature ionic liquids and nanomaterials for the development of innovative enzymatic biosensors[J]. Talanta, 2017, 175: 566-572. doi: 10.1016/j.talanta.2017.07.081
    [26] BI Y H, DUAN Z Q, LI X Q, et al. Introducing biobased ionic liquids as the nonaqueous media for enzymatic synthesis of phosphatidylserine[J]. Journal of Agricultural and Food Chemistry, 2015, 63(5): 1558-1561. doi: 10.1021/jf505296k
    [27] WANG R, CHANG Y, TAN Z, et al. Applications of choline amino acid ionic liquid in extraction and separation of flavonoids and pectin from ponkan peels[J]. Separation Science and Technology, 2016, 51(7): 1093-10102. doi: 10.1080/01496395.2016.1143006
    [28] BHATTACHARYYA S, SHAH F U. Ether functionalized choline tethered amino acid ionic liquids for enhanced CO2 capture[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(10): 5441-5449.
    [29] CHEN C, FENG N, GUO Q, et al. Surface engineering of a chromium metal-organic framework with bifunctional ionic liquids for selective CO2 adsorption: Synergistic effect between multiple active sites[J]. Journal of Colloid and Interface Science, 2018, 521: 91-101. doi: 10.1016/j.jcis.2018.03.029
    [30] 徐金乔, 朱雨航, 张少泽, 等. 咪唑类脯氨酸离子液体水溶液体积性质[J]. 华东理工大学学报(自然科学版), 2018(5): 691-698.
    [31] 耿彦芳, 刘鑫, 虞大红, 等. [C4mim][BF4]与乙醇胺和N, N-二甲基乙醇胺混合体系的密度、黏度和电导率[J]. 华东理工大学学报(自然科学版), 2009(03): 400-406. doi: 10.3969/j.issn.1006-3080.2009.03.013
    [32] HOU X D, LI N, ZONG M H. Facile and simple pretreatment of sugar cane bagasse without size reduction using renewable ionic liquids–water mixtures[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(5): 519-526.
    [33] TO T Q, PROCTER K, SIMMONS B A, et al. Low cost ionic liquid-water mixtures for effective extraction of carbohydrate and lipid from algae[J]. Faraday Discuss, 2017, 206: 93-112.
    [34] TO T Q, SHAH K, TREMAIN P, et al. Treatment of lignite and thermal coal with low cost amino acid based ionic liquid-water mixtures[J]. Fuel, 2017, 202: 296-306. doi: 10.1016/j.fuel.2017.04.051
    [35] HERRERA C, COSTA L T, ATILHAN M, et al. Microscopic characterization of amino acid ionic liquids - water mixtures[J]. Journal of Molecular Liquids, 2017, 236: 81-92. doi: 10.1016/j.molliq.2017.04.008
    [36] ZAFARANI-MOATTAR M T, SHEKAARI H, JAFARI P. Evaluation of solute–solvent interactions in aqueous solutions containing cholinium aminoate ionic liquids and polyethylene glycol dimethyl ether as a nontoxic solvent: Thermodynamic and transport studies[J]. Journal of Chemical & Engineering Data, 2019, 64(4): 1322-1337.
    [37] TAGHI ZAFARANI-MOATTAR M, SHEKAARI H, MOSTAFAVI H, et al. Thermodynamic and transport properties of aqueous solutions containing cholinium -alaninate and polyethylene glycol dimethyl ether 250: Evaluation of solute-solvent interactions and phase separation[J]. The Journal of Chemical Thermodynamics, 2019, 132: 9-22. doi: 10.1016/j.jct.2018.12.022
    [38] 齐文爽. [Cnmim][BF4](n=3, 4)水溶液体积及黏度性质研究[D]. 沈阳: 辽宁大学, 2019.
    [39] CAPARICA R, JÚLIO, ANA, BABY, et al. Choline-amino acid ionic liquidsas green functional excipients to enhance drug solubility[J]. Pharmaceutics, 2018, 10(4): 288.
    [40] 王薪薪, 唐少峰, 吕兴梅, 等. 氨基酸季铵离子液体水溶液的密度和黏度[J]. 中国科学: 化学, 2014(6): 1050-1057.
    [41] MÉRIÈM ANOUTI, VIGEANT A, JACQUEMIN J, et al. Volumetric properties, viscosity and refractive index of the protic ionic liquid, pyrrolidinium octanoate, in molecular solvents[J]. The Journal of Chemical Thermodynamics, 2010, 42(7): 834-845. doi: 10.1016/j.jct.2010.01.013
    [42] SHEN M, CHE S, ZHANG Y, et al. Effect of the temperature and coordination atom on the physicochemical properties of chelate-based ionic liquids and their binary mixtures with water[J]. Journal of Chemical & Engineering Data, 2014, 59(12): 3960-3968.
    [43] XU W, COOPER E I, ANGELL C A. Ionic liquids: Ion mobilities, glass temperatures, and fragilities[J]. Journal of Physical Chemistry B, 2003, 107(25): 6170-6178. doi: 10.1021/jp0275894
    [44] JOSÉ C L, GOMES M C, HUSSON P, et al. Polarity, viscosity, and ionic conductivity of liquid mixtures containing [C4C1im][Ntf2] and a molecular component[J]. The Journal of Physical Chemistry B, 2011: 115.
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  200
  • HTML全文浏览量:  167
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-27
  • 网络出版日期:  2021-02-25

目录

    /

    返回文章
    返回