高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

纯氧克劳斯工艺的模拟与优化

高德志 喻昕蕾 陶迅 丁路 代正华 王辅臣

高德志, 喻昕蕾, 陶迅, 丁路, 代正华, 王辅臣. 纯氧克劳斯工艺的模拟与优化[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20201204003
引用本文: 高德志, 喻昕蕾, 陶迅, 丁路, 代正华, 王辅臣. 纯氧克劳斯工艺的模拟与优化[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20201204003
GAO Dezhi, YU Xinlei, TAO Xun, DING Lu, DAI Zhenghua, WANG Fuchen. Simulation and Optimization of Pure Oxygen Claus Process[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20201204003
Citation: GAO Dezhi, YU Xinlei, TAO Xun, DING Lu, DAI Zhenghua, WANG Fuchen. Simulation and Optimization of Pure Oxygen Claus Process[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20201204003

纯氧克劳斯工艺的模拟与优化

doi: 10.14135/j.cnki.1006-3080.20201204003
基金项目: 国家自然科学基金(21978092)
详细信息
    作者简介:

    高德志(1996—),男,福建泉州人,硕士生,研究方向为克劳斯工艺流程模拟与优化研究。E-mail:623686540@qq.com

    通讯作者:

    王辅臣,E-mail:wfch@ecust.eud.cn

  • 中图分类号: TQ125.11

Simulation and Optimization of Pure Oxygen Claus Process

  • 摘要: 克劳斯工艺是高效处理H2S等酸性气体并回收硫磺的技术之一。工业过程处理低浓度酸性气体时,需要加入助燃气体以保证火焰稳定,但会导致多环芳烃、有机硫等有害物质的量增加。而采用纯氧燃烧,则可在无需引入助燃气体的情况下提高炉膛温度、增加烃类杂质的去除率。论文基于Aspen plus软件建立克劳斯工艺全流程模型,使用某工厂数据进行验证,探究了进口酸气组成、氧气浓度及进气量、氧气预热温度、炉膛压力及第二催化段反应器温度对于克劳斯工艺的影响,并以硫收率为目标函数利用Aspen plus优化工具计算了最佳操作参数。优化结果表明:硫收率从98.31%提高到99.08%,尾气中主要污染物SO2的排放量由0.350 kmol/h减少至0.278 kmol/h,降低了20.6%,并节约了酸性气体和空气预热所需的热量9133.38 kJ/(kmol酸性气体)。

     

  • 图  1  Aspen plus克劳斯硫回收过程流程图

    Figure  1.  A schematic diagram of the Claus process in Aspen plus

    图  2  氧气摩尔分数对克劳斯硫回收过程的影响

    Figure  2.  Effect of oxygen molar fraction on the performance of the Claus process

    图  3  氧气摩尔分数对n(H2S)/n(SO2)的影响

    Figure  3.  Effect of oxygen molar fraction on the n(H2S)/n(SO2)

    图  4  α对克劳斯硫回收过程的影响

    Figure  4.  Effect of α on the performance of the Claus process

    图  5  α对总硫收率和第一催化段出口处n(H2S)/n(SO2)的影响

    Figure  5.  Effect of α on the performance of the sulfur recovery efficiency and n(H2S)/n(SO2) of first catalysis stage

    图  6  氧气预热温度对克劳斯硫回收过程的影响

    Figure  6.  Effect of oxygen preheating temperature on the performance of the Claus process

    图  7  炉膛压力对克劳斯硫回收过程总硫收率的影响

    Figure  7.  Effect of furnace pressure on the sulfur recovery efficiency of the Claus process

    图  8  第二催化段反应器温度对克劳斯硫回收过程的影响

    Figure  8.  Effect of second catalysis stage reaction temperature on the performance of the Claus process

    表  1  进料气组分摩尔分数

    Table  1.   Gas molar composition of the inlet

    GasMolar fraction/%
    AG1AG2AG3AIR1
    H200.5012.400
    Ar000.200.93
    N229.0020.000.2078.09
    CO00.508.000
    CO220.0067.0075.000.03
    H2S50.002.001.000
    H2O003.000
    NH3000.200
    O200020.95
    CH3OH1.0010.0000
    下载: 导出CSV

    表  2  RF1考虑的反应

    Table  2.   Considered reactions in RF1

    ReactionNo.
    $ {\rm{N}}{{\rm{H}}}_{3} \to {\rm{0.5N}}_{{2}}{+1.5}{{\rm{H}}}_{{2}} $R1
    $ {{\rm{H}}_2}{\rm{S + 1}}{\rm{.5}}{{\rm{O}}_2} \to {{\rm{H}}_2}{\rm{O + S}}{{\rm{O}}_2}$R2
    下载: 导出CSV

    表  3  RF2内考虑的反应及其动力学参数

    Table  3.   Kinetic parameters and reactions of RF2

    ReactionReaction rate expressionsNo.Reference
    ${{\rm{H}}_{\rm{2}}}{\rm{S}} \leftrightarrow {{\rm{H}}_{\rm{2}}}{\rm{ + 0}}{\rm{.5}}{{\rm{S}}_{\rm{2}}}$$-{r_{ {\rm{ {H} }_2s} } }=1.63\times{10^{-1} }{ {\rm{e} }^{\dfrac{ {45.1} }{ {RT} } } }{P_{\rm{ { {H} }_2}S} }P_{\rm{S_2} }^{0.5}-1.36\times{10^{-6} }{ {\rm{e} }^{\dfrac{ {23.4} }{ {RT} } } }{P_{\rm{H_2} } }{P_{\rm{S_2} } }$R3[19]
    ${\rm{CO} } + 0.5{{\rm{S}}_2} \leftrightarrow {\rm{COS}}$$- {r_{ {\rm{CO} } } } = 3.18\times {10^5}{ {\rm{e} }^{\dfrac{ {15.3} }{ {RT } } } }\left( { {c_{\rm{CO} } }{c_{ { {\rm{S} }_2} } } - \dfrac{1}{ { {k_{\rm{eq2} } } } }{c_{\rm{COS} } }c_{ { {\rm{S} }_2} }^{0.5} } \right)$R4[20]
    $ {\rm{C}}{{\rm{O}}_{\rm{2}}}{\rm{ + }}{{\rm{H}}_{\rm{2}}} \leftrightarrow {\rm{CO + }}{{\rm{H}}_{\rm{2}}}{\rm{O}}$$-{r_{\rm{C{O_2} } } }=8.59\times{10^{10} }{ {\rm{e} }^{\dfrac{ {64.7} }{ {RT} } } }\left( { {c_{\rm{C{O_2} }} }c_{ {\rm{ {H} }_2} }^{0.5}-\dfrac{1}{ {\rm{k_{eq3} } } }\dfrac{ { {c_{\rm{CO} } }{c_{ {\rm{ {H} }_2O} } } } }{ {c_{ {\rm{ {H} }_2} }^{0.5} } } } \right)$R5[21]
    $ {\rm{CO + }}{{\rm{H}}_{\rm{2}}}{\rm{S}} \leftrightarrow {\rm{COS + }}{{\rm{H}}_{\rm{2}}} $$-r{\rm{_{CO} } }=1.59\times{10^5}{ {\rm{e} }^{\dfrac{ {26.5} }{ {RT} } } }\left({ {c_{\rm{CO} } }c_{ {\rm{ {H} }_2S} }^{0.5}-\dfrac{1}{ {\rm{k_{eq4} } } }\dfrac{ { {c_{\rm{COS} } }{c_{ {\rm{ {H} }_2} } } } }{ {c_{ {\rm{ {H} }_2S}}^{0.5} } } }\right)$R6[22]
    $ {{\rm{H}}_{\rm{2}}}{\rm{S + 0}}{\rm{.5S}}{{\rm{O}}_{\rm{2}}} \leftrightarrow {\rm{0}}{\rm{.75}}{{\rm{S}}_{\rm{2}}}{\rm{ + }}{{\rm{H}}_{\rm{2}}}{\rm{O}}$$-{r_{ {\rm{ {H} }_2}S} }=3.18\times{10^3}{ {\rm{e} }^{\dfrac{ {14.3} }{ {RT} } } }{c_{ {\rm{ {H} }_2S}} }c_{\rm{S{O_2} } }^{0.5}-3.11\times{10^1}{ {\rm{e} }^{\dfrac{ {8.5} }{ { {RT} } } }}{c_{\rm{ { { {H} }_2}O} } }c_{ {\rm{S_2} } }^{0.75}$R7[23]
    下载: 导出CSV

    表  4  炉膛出口气模拟结果与工厂工况比较结果

    Table  4.   Simulated results versus plant data for composition of gas from furnace

    Gasq/(kmol·h−1)
    Plant dateSimulated resultsAbsolute error/%
    H21.6361.6983.81
    Ar0.6000.6000.01
    N263.45363.4480.01
    CO1.0381.23318.77
    CO227.07926.8680.78
    H2S9.1559.1750.22
    COS0.1190.13312.13
    SO24.6374.7893.27
    H2O17.93017.8360.53
    S25.4585.3871.31
    下载: 导出CSV

    表  5  优化结果与运行工况重要参数比较

    Table  5.   Important parameters of the optimization results compared with operating condition’s

    Important parametersOperating parametersOptimization results
    x(O2)/%20.9599.60
    Split ratio0.801.00
    Air molar flow/kmol·h−160.9014.09
    T0/℃80.0025.00
    Ta/℃240.0025.00
    Ts/℃218.00180.00
    Tf/℃1019.391314.11
    YS/%98.3199.08
    n(H2S)/n(SO2) of first catalysis stage1.992.00
    Outlet SO2 mole flow of off-gas/kmol·h−10.3500.278
    下载: 导出CSV
  • [1] GUPTA A K, IBRAHIM S, SHOAIBI A A. Advances in sulfur chemistry for treatment of acid gases[J]. Progress in Energy and Combustion Science, 2016, 54: 65-92. doi: 10.1016/j.pecs.2015.11.001
    [2] MAHDIPOOR H R, ASHKEZARI A D. Feasibility study of a sulfur recovery unit containing mercaptans in lean acid gas feed[J]. Journal of Natural Gas Science and Engineering, 2016, 31: 585-588. doi: 10.1016/j.jngse.2016.03.045
    [3] BASSANI A, PIROLA C, BOZZANO G, et al. Technical Feasibility of AG2S™ Process Revamping[J]. Computer Aided Chemical Engineering, 2017, 40: 385-390. doi: 10.1016/B978-0-444-63965-3.50066-0
    [4] 陈赓良, 肖学兰, 杨仲熙, 等. 克劳斯法硫磺回收工艺技术[M]. 北京: 石油工业出版社, 2007.
    [5] MANENT F, PAPASODERO D, BOZZANO G, et al. Model-based optimization of sulfur recovery units. 2014, 66: 244-251.
    [6] ZAREI S. Life cycle assessment and optimization of Claus reaction furnace through kinetic modeling[J]. Chemical Engineering Research and Design, 2019, 148: 75-85. doi: 10.1016/j.cherd.2019.06.005
    [7] DUSTIN D J. Steady state and dynamic modeling of the modified Claus process as part of an IGCC power plant[D]. American: West Virginia University, 2011.
    [8] MOHAMMED S, RAJ A, SHOAIBI A A. Effects of fuel gas addition to Claus furnace on the formation of soot precursors[J]. Combustion and Flame, 2016, 168: 240-254. doi: 10.1016/j.combustflame.2016.03.008
    [9] ASADI S, PAKIZEH M, CHENAR M P. An investigation of reaction furnace temperatures and sulfur recovery[J]. Frontiers of Chemical Engineering in China, 2011, 5(3): 362-371.
    [10] RAHMAN R K, IBRAHIM S, RAJ A. Oxidative destruction of monocyclic and polycyclic aromatic hydrocarbon (PAH) contaminants in sulfur recovery units[J]. Chemical Engineering Science, 2016, 155: 348-365. doi: 10.1016/j.ces.2016.08.027
    [11] CHARDONNEAUA M, IBRAHIM S, GUOTA A K, et al. Role of toluene and carbon dioxide on sulfur recovery efficiency in a Claus process[J]. Energy Procedia, 2015, 75: 3071-3075. doi: 10.1016/j.egypro.2015.07.630
    [12] SELIM H, GUPTA A K, SHOAIBI A A. Effect of CO2 and N2 concentration in acid gas stream on H2S combustion[J]. Applied Energy, 2012, 98: 53-58. doi: 10.1016/j.apenergy.2012.02.072
    [13] IBRAHIM S, RAHMAN R K, RAJ A. Effects of H2O in the feed of sulfur recovery unit on sulfur production and aromatics emission from Claus furnace[J]. Industrial and Engineering Chemistry Research, 2017, 56(41): 11713-11725. doi: 10.1021/acs.iecr.7b02553
    [14] IBRAHIM S, RAHMAN R K, RAJ A. Roles of hydrogen sulfide concentration and fuel gas injection on aromatics emission from Claus furnace[J]. Chemical Engineering Science, 2017, 172: 513-527. doi: 10.1016/j.ces.2017.06.050
    [15] LIi Y, YU X, LI H, et al. Detailed kinetic modeling of H2S oxidation with presence of CO2 under rich condition[J]. Applied Energy, 2017, 190: 824-834. doi: 10.1016/j.apenergy.2016.12.150
    [16] LI Y, GUO Q, YU X, et al. Effect of O2 enrichment on acid gas oxidation and formation of COS and CS2 in a rich diffusion flame[J]. Applied Energy, 2017, 206: 905-958.
    [17] LI Y, YU X, GUO Q, et al. Detailed kinetic modeling of homogeneous H2S-CH4 oxidation under ultra-rich condition for H2 production[J]. Applied Energy, 2017, 208: 905-919. doi: 10.1016/j.apenergy.2017.09.059
    [18] KAZEMPOUR H, POURFAYAZ F, MEHRPOOYA M. Modeling and multi-optimization of thermal section of Claus process based on kinetic model[J]. Journal of Natural Gas Science and Engineering, 2017, 38: 235-244. doi: 10.1016/j.jngse.2016.12.038
    [19] HAWBOLDT, K. A., MONNERY, W D, SVRCEK W Y New experimental data and kinetic rate expression for H2S pyrolysis and re-association[J]. Chemical Engineering Science, 2000, 55(5): 957-966. doi: 10.1016/S0009-2509(99)00366-8
    [20] KARAN K, MEHROTRA A K, BEHIE L A. COS-forming reaction between CO and sulfur: A high-temperature intrinsic kinetics study[J]. Industrial and Engineering Chemistry Research, 1998, 37(12): 4609-4616. doi: 10.1021/ie9802966
    [21] KARAN K. An experimental and modeling study of homogeneous gas phase reactions occurring in the modified Claus process[D]. Canada: University of Calgary, 1998.
    [22] KARAN K, MEHROTRA A K, BEHIE L A. A high-temperature experimental and modeling study of homogeneous gas-phase COS reactions applied to Claus plants[J]. Chemical Engineering Science, 1999, 54(16): 2999-3006.
    [23] TESNER P, NEMIROVSKII M, MOTYL D. Kinetics of the thermal decomposition of hydrogen sulfide at 600—1200 ℃[J]. Kinetics and Catalysis, 1990, 31: 1081-1083.
    [24] GAMSON B W, ELKNS R H. Sulfur from hydrogen sulfide[J]. Chemical Engineering Process, 1953, 49(4): 203-205.
    [25] 王青, 余小光, 乔明杰, 等. 基于序列二次规划算法的定位器坐标快速标定方法[J]. 浙江大学学报(工学版), 2017, 51(2): 319-327.
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  334
  • HTML全文浏览量:  272
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-04
  • 网络出版日期:  2021-01-25

目录

    /

    返回文章
    返回