高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

煤气化废水处理和固体氧化物电池耦合系统的过程设计和经济分析

汪鹏 张桥 冯霄

汪鹏, 张桥, 冯霄. 煤气化废水处理和固体氧化物电池耦合系统的过程设计和经济分析[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20201130005
引用本文: 汪鹏, 张桥, 冯霄. 煤气化废水处理和固体氧化物电池耦合系统的过程设计和经济分析[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20201130005
WANG Peng, ZHANG Qiao, FENG Xiao. Process Design and Economic Analysis of Coal Gasification Wastewater Treatment and Solid Oxide Cells Coupling System[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20201130005
Citation: WANG Peng, ZHANG Qiao, FENG Xiao. Process Design and Economic Analysis of Coal Gasification Wastewater Treatment and Solid Oxide Cells Coupling System[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20201130005

煤气化废水处理和固体氧化物电池耦合系统的过程设计和经济分析

doi: 10.14135/j.cnki.1006-3080.20201130005
基金项目: 国家自然科学重点基金 (21736008)
详细信息
    作者简介:

    汪鹏:汪 鹏(1994—),男,河北唐山人,在读硕士,主要研究方向:化工系统工程。 E-mail:xjtu19941129@stu.xjtu.edu.cn

    通讯作者:

    张 桥,E-mail:qzhang1986@xjtu.edu.cn

  • 中图分类号: TQ-9

Process Design and Economic Analysis of Coal Gasification Wastewater Treatment and Solid Oxide Cells Coupling System

  • 摘要: 以固定床鲁奇气化炉废水为例,耦合煤气化废水处理过程与固体氧化物电池(SOCs),并引入可再生能源组建废水资源化利用系统,探讨分别采用一步法和两步法副产二甲醚(DME)的工艺流程以降低处理成本。结果表明,风电结合两步法制取DME在经济上更具优势,碳排放量仅高出2.32%。通过与SOCs系统耦合,高效利用废水回收资源并转化为高附加值产品不仅可行,且是降低成本和减少排放的有效方式。

     

  • 图  1  煤气化废水处理与固体氧化物电池系统耦合流程图(方案一:一步法DME合成方案,方案二:两步法DME合成方案)

    Figure  1.  Flow charts for coupling system of solid oxide cell and coal gasification wastewater treatment (Case I: Single step DME synthesis scenario, Case II: Two-step DME synthesis scenario)

    图  2  SOEC阴极模型

    Figure  2.  Cathode model of SOEC

    图  3  两种方案制取二甲醚的总资本投资

    Figure  3.  TCI of two scenarios for dimethyl ether production

    图  4  不同清洁能源生产DME的平均成本

    Figure  4.  Levelized cost of DME production by different clean energy sources

    图  5  废水处理耦合SOCs系统生产DME不同方案的净现值

    Figure  5.  NPV of different scenarios for DME production by wastewater treatment and SOCs coupling system

    图  6  SOCs系统生产DME的二氧化碳排放

    Figure  6.  CO2 emission from DME production by SOCs system

    表  1  废水水质数据[2]

    Table  1.   Wastewater quality data[2]

    Flowrate /(t·h−1)Mass concentration/(mg·L−1)
    NH3CO2H2S
    Wastewater (Stream 1)10080004500300
    下载: 导出CSV

    表  2  SOEC模型核心参数可靠性验证

    Table  2.   Reliability verification of core parameters of SOEC model

    T/℃Open Circuit Voltage /mVError/%ASR /(Ω·cm−2)Error/%
    ExperimentalCalculatedExperimentalCalculated
    Steam electrolysis750.00982.00952.94−2.960.410.40−2.47
    800.00967.00967.960.100.270.3011.38
    850.00951.00976.822.720.190.2319.02
    Co-electrolysis750.00843.00875.053.800.510.48−5.90
    800.00869.00873.560.530.370.37−0.99
    850.00890.00867.77−2.500.260.287.56
    下载: 导出CSV

    表  3  两步法合成DME相关反应

    Table  3.   Two-step synthesis of DME related reactions

    MeOH synthesisDME synthesis
    Reactions$ \begin{array}{*{20}{c}} {{\rm{CO}} + 2{{\rm{H}}_2}\rightleftharpoons{\rm{C}}{{\rm{H}}_3}{\rm{OH}}}\\ {{\rm{C}}{{\rm{O}}_2} + 3{{\rm{H}}_2}\rightleftharpoons{\rm{C}}{{\rm{H}}_3}{\rm{OH}} + {{\rm{H}}_2}{\rm{O}}}\\ {{\rm{C}}{{\rm{O}}_2} + {{\rm{H}}_2}\rightleftharpoons{\rm{CO}} + {{\rm{H}}_2}{\rm{O}}} \end{array}$$ 2{\rm{C}}{{\rm{H}}_3}{\rm{OH}} \to {\rm{C}}{{\rm{H}}_3}{\rm{OC}}{{\rm{H}}_3} + {{\rm{H}}_2}{\rm{O}}$
    下载: 导出CSV

    表  4  关键物流模拟结果数据

    Table  4.   Simulation results of key streams

    StreamsFlow rate/(kmol·h−1T/℃P/barMole fraction
    COCO2H2OCH4H2NH3H2SO2CH3OHDME
    611.5450.174.5089.912.800.556.74
    321.08200.003.284.580.4295
    41373.65750.001.084.8744.9444.970.095.13
    44117.47758.831.00100
    48233.41220.0030.0048.60.3351.07
    5720.0637.2530.0028.4414.260.231.3350.954.79
    61505.4431.029.000.955.8785.580.10.181.066.26
    6835.91−52.658.2113.4482.671.42.480.01
    6931.6431.838.21trace>99.99
    42*265.49750.001.084.8744.9644.940.115.12
    46*533.49750.001.085050
    50*176.79774.991.00100
    53*393.72150.0080.0020.488.382.030.1468.97
    60*150.7741.7620.270.011.0225.540.050.1673.22
    67*134.49270.0012.000.010.1799.520.3
    73*54.8636.848.210.0199.99
    *为Case Ⅱ中对应的物流标号
    下载: 导出CSV

    表  5  各单元公用工程需求

    Table  5.   Energy consumption requirements of each unit

    Energy Consumption /kWCase ⅠCase Ⅱ
    BiogasPurificationSOCsNHDDMEBiogasPurificationSOCsDME
    Fired heat1,945.114354.38
    Refrigerant 1 (-25 ℃)3.77107.513.77
    Refrigerant 3 (-65 ℃)419.73
    Cooling Water298.01193.594,393.08
    Air3310.33
    HP Steam1,991.75
    MP Steam296.84−812.87−1,727.74
    Electric energy9.5617,205.631,732.299.5625,234.373,857.27
    下载: 导出CSV

    表  6  税率及折旧计算参数[23]

    Table  6.   Tax rate and depreciation calculation parameters

    CategoryTax rate /%Period of
    depreciation/ a
    Residual value
    rate/%
    (1-3 a)(4-6 a)(7 a~)
    0.0012.5025.0015.005.00
    下载: 导出CSV

    表  7  风能供电下两方案碳排放比较

    Table  7.   Comparison of CO2 emission for the two scenarios under wind power

    Annual productivity
    of DME/ton
    Levelized CO2 emission/
    (kg CO2/ton DME)
    Annual CO2
    emission/ton
    Case Ⅰ11660.851089.7712707.64
    Case Ⅱ20216.78643.1313002.02
    下载: 导出CSV
  • [1] 王子兴. 煤气化废水特征污染物在厌氧/缺氧/好氧组合工艺中的降解特性研究[D]. 辽宁: 大连理工大学, 2014.
    [2] 崔培哲. 固定床煤气化高浓有机废水近零排放处理流程技术研究[D]. 广东: 华南理工大学, 2017.
    [3] 姜忠义, 李玉平, 陈志强, 等. 煤化工废水近零排放与资源化关键技术研究与应用示范[J]. 化工进展, 2016, 35(12): 2.
    [4] 李雅婕. 厌氧强化工艺处理煤气化废水中酚降解和产甲烷效能的研究[D]. 上海: 上海交通大学, 2017.
    [5] 陈烁烁. 固体氧化物燃料电池产业的发展现状及展望[J]. 陶瓷学报, 2020, 41(5): 627-632.
    [6] MINUTILLO M, PERNA A, JANNELLI E. SOFC and MCFC system level modeling for hybrid plants performance prediction[J]. International Journal of Hydrogen Energy, 2014, 39(36): 21688-21699. doi: 10.1016/j.ijhydene.2014.09.082
    [7] MEHRPOOYA M, SADEGHZADEH M, RAHIMI A, et al. Technical performance analysis of a combined cooling heating and power (CCHP) system based on solid oxide fuel cell (SOFC) technology -A building application[J]. Energy Conversion and Management, 2019, 198: 1-15.
    [8] NI M. An electrochemical model for syngas production by co-electrolysis of H2O and CO2[J]. Journal of Power Sources, 2012, 202: 209-216. doi: 10.1016/j.jpowsour.2011.11.080
    [9] SAMAVATI M, SANTARELLI M, MARTIN A, et al. Thermodynamic and economy analysis of solid oxide electrolyser system for syngas production[J]. Energy, 2017, 122: 37-49. doi: 10.1016/j.energy.2017.01.067
    [10] 董亦, 邹媛媛, 牛玉刚. 基于分层内嵌预测控制的多微电网能量优化管理[J]. 华东理工大学学报(自然科学版), 2018, 44(4): 463-473.
    [11] 董文博, 孙凯, 习卫峰. 一步法二甲醚合成技术[J]. 广州化工, 2014, 42(20): 39-41.
    [12] 曹文. 合成气一步法制DME分离工艺的研究[D]. 北京: 北京化工大学, 2004.
    [13] ZHANG W, CROISET E, DOUGLAS P L, et al. Simulation of a tubular solid oxide fuel cell stack using AspenPlus TM unit operation models[J]. Energy Conversion & Management, 2005, 46(2): 181-196.
    [14] GIGLIO E, LANZINI A, SANTARELLI M, et al. Synthetic natural gas via integrated high-temperature electrolysis and methanation: Part I—Energy performance[J]. Journal of Energy Storage, 2015, 1: 22-37. doi: 10.1016/j.est.2015.04.002
    [15] REDISSI Y, BOUALLOU C. Valorization of carbon dioxide by co-electrolysis of CO2/H2O at high temperature for syngas production[J]. Energy Procedia, 2013, 37: 6667-6678. doi: 10.1016/j.egypro.2013.06.599
    [16] 张海鹏. 合成气一步合成二甲醚的催化剂、反应机理及动力学研究[D]. 上海: 华东理工大学, 2012.
    [17] 藏志伟. 浆态床一步法合成二甲醚能耗分析与优化[D]. 山西: 太原理工大学, 2015.
    [18] 柳祥伟. NC309型甲醇合成催化剂的动力学研究[D]. 上海: 华东理工大学, 2011.
    [19] MICHAILOS S, MCCORD S, SICK V, et al. Dimethyl ether synthesis via captured CO2 hydrogenation within the power to liquids concept: A techno-economic assessment[J]. Energy Conversion and Management, 2019, 184: 262-276. doi: 10.1016/j.enconman.2019.01.046
    [20] 李纭. 低浓度 H2S 酸气直接氧化法硫回收工艺研究[D]. 四川: 西南石油大学, 2016.
    [21] 梁一波. 长庆油田硫磺回收工艺的研究[D]. 山东: 中国石油大学(华东), 2016.
    [22] 王晓扬, 陈绍云, 张永春, 等. 乙酸钠法选择性脱除CO2中的SO2[J]. 化工进展, 2012, 31(10): 2335-2340.
    [23] HOUSE KZ, BACLIG ANTONIO C, RANGAN MANYA, et al. Economic and energetic analysis of capturing CO2 from ambient air[J]. Proceedings of the National Academy of Sciences, 2011, 108(51): 20428-20433. doi: 10.1073/pnas.1012253108
    [24] SEIDER W D, SEADER J D, LEWIN D R. Product and process design principles: synthesis, analysis, and evaluation[M]. US: Donald Fowley, 2004.
    [25] 姚利森. SOFC在天然气分布式应用中的经济性分析[J]. 上海节能, 2019(11): 947-952.
    [26] MAR P, JAN C S, AIKATERINI B, et al. Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment[J]. Applied Energy, 2016, 161(15): 718-732.
    [27] TRIPPE F, FRÖHLING M, SCHULTMANN F, et al. Comprehensive techno-economic assessment of dimethyl ether (DME) synthesis and Fischer-Tropsch synthesis as alternative process steps within biomass-to-liquid production[J]. Fuel Processing Technology, 2013, 106: 577-586. doi: 10.1016/j.fuproc.2012.09.029
    [28] 佚名. 供应气雾剂级二甲醚DME[EB/OL]. 2017-10-17 [2020-07-21]. https://b2b.baidu.scom/clist/0F31072475087F37751E0A18.
    [29] SÖĞÜT M Z. Developing CO2 emission parameters to measure the environmental impact on cooling applications[J]. International Journal of Green Energy, 2015, 12(1): 65-72. doi: 10.1080/15435075.2014.889008
    [30] 马义伟, 刘纪福, 钱辉广. 空气冷却器[M]. 北京: 化学工业出版社, 1982.
    [31] TURCONI R, BOLDRIN A, ASTRUP T. Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations[J]. Renewable & Sustainable Energy Reviews, 2013, 28: 555-565.
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  333
  • HTML全文浏览量:  338
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-30
  • 网络出版日期:  2021-03-24

目录

    /

    返回文章
    返回