Evolution Characteristics of Single Iron Concentrate Particle During the High-Temperature Reduction Process
-
摘要: 采用高温热台显微镜原位研究了铁精粉单颗粒在高温及CO气氛下还原过程的演化特征。通过原位实验记录了铁精粉单颗粒的高温还原过程,并利用拉曼光谱仪验证了还原反应产物(单质铁)。结果表明,颗粒表面出现单质铁的时间受温度影响显著,受气体流量影响小。其中,当温度从1 100 ℃升至1 300 ℃时,单质铁的生成时间缩短约75%;当温度从1 300 ℃升至1 400 ℃时,单质铁的生成时间基本不变。当温度为1 100~1 350 ℃时,铁精粉颗粒在还原过程中表面会产生瘤状物,且瘤状物尺寸随着温度升高而增大。引入瘤状物长宽和的平均值为特征尺度l,当还原温度由1 100 ℃升高至1 350 ℃时,l由6 μm增大至15 μm。当还原温度高于1 400 ℃时,铁精粉颗粒出现熔融态的产物分层现象:内层为还原铁,中层为熔融氧化亚铁被还原的树根状金属铁,外层为含有Al、Ca和Si等元素集聚的铁渣。Abstract: The evolution characteristics of the reduction process of single iron concentrate particles under high temperature and CO atmospheres were tested in-situ experiment with a high temperature stage microscope. The high-temperature reduction process of the single iron concentrate was recorded via in-situ experiment, and the reduced product (elemental iron) was verified by Raman spectrometer. The results showed that the initial formation time of elemental iron on the particle surface was mainly determined by temperature, and the influence of the gas flow rate was smaller. The initial formation time decreased by about 75% when the reduction temperature increased from 1 100 ℃ to 1 300 ℃, but it hardly changed when the temperature increased from 1 300 ℃ to 1 400 ℃. Nodular structures were found on the surface of iron concentrate particles during the reduction process between 1 100 ℃ and 1 350 ℃, and their sizes increased with the rising reduction temperature. A characteristic number l, which was self-defined as the mean value of the length and width of the particles, increased from 6 μm at 1 100 ℃ to 15 μm at 1 350 ℃. When the reduction temperature was above 1 400 ℃, layered melting products were observed for the iron concentrate particle. The product on the core was reduced iron, the one on the second layer was the root-shaped metal iron with reduced molten ferrous oxide, and the other one on the outer layer was the iron slag containing Al, Ca, Si, and other elements.
-
Key words:
- iron concentrate particle /
- high temperature reduction /
- particle evolution /
- CO /
- microstructure
-
表 1 铁精粉的化学组成
Table 1. Chemical composition of iron concentrate particle
w/% TFe SiO2 MgO CaO Al2O3 53.04 19.37 2.90 6.52 1.46 -
[1] KARALI N, PARK W Y, MCNEIL M. Modeling technological change and its impact on energy savings in the U.S. iron and steel sector[J]. Applied Energy, 2017, 202: 447-458. doi: 10.1016/j.apenergy.2017.05.173 [2] WU X, ZHAO L, ZHANG Y, et al. Cost and potential of energy conservation and collaborative pollutant reduction in the iron and steel industry in China[J]. Applied Energy, 2016, 184: 171-183. doi: 10.1016/j.apenergy.2016.09.094 [3] HASANBEIGI A, ARENS M, PRICE L. Alternative emerging ironmaking technologies for energy-efficiency and carbon dioxide emissions reduction: A technical review[J]. Renewable and Sustainable Energy Reviews, 2014, 33: 645-658. doi: 10.1016/j.rser.2014.02.031 [4] LU W K, JIANG X, YANG J L. Smelting reduction and direct reduction for alternative ironmaking[C]// 5th International Conference on Science and Technology of Ironmaking. Beijing: Journal of Iron Steel Research, 2009, 16: 79-86. [5] CONSIDINE T J, JABLONOWSKI C, CONSIDINE D. The environment and new technology adoption in the US steel industry[J]. University Park, 2001, 5(3): 47-59. [6] CHEN H, ZHENG Z, CHEN Z, et al. Reduction of hema-tite (Fe2O3) to metallic iron (Fe) by CO in a micro fluidized bed reaction analyzer: A multistep kinetics study[J]. Powder Technology, 2017, 316: 410-420. [7] OH J, NOH D. The reduction kinetics of hematite particles in H2 and CO atmospheres[J]. Fuel, 2017, 196: 144-153. doi: 10.1016/j.fuel.2016.10.125 [8] BOHN C D, CLEETON J P, MÜLLER C R, et al. The kinetics of the reduction of iron oxide by carbon monoxide mixed with carbon dioxide[J]. AIChE Journal, 2010, 56(4): 1016-1029. [9] CHEN F, MOHASSAB Y, JIANG T, et al. Hydrogen reduction kinetics of hematite concentrate particles relevant to a novel flash ironmaking process[J]. Metallurgical and Materials Transactions B, 2015, 46: 1133-1145. doi: 10.1007/s11663-015-0332-z [10] CHEN F, MOHASSAB Y, ZHANG S, et al. Kinetics of the reduction of hematite concentrate particles by carbon monoxide relevant to a novel flash ironmaking process[J]. Metallurgical and Materials Transactions B, 2015, 46: 1716-1728. doi: 10.1007/s11663-015-0345-7 [11] CHOI M E, SOHN H Y. Development of green suspension ironmaking technology based on hydrogen reduction of iron oxide concentrate: Rate measurements[J]. Ironmaking & Steelmaking, 2010, 37: 81-88. [12] ZUO H, WANG C, DONG J, et al. Reduction kinetics of iron oxide pellets with H2 and CO mixtures[J]. International Journal of Minerals, Metallurgy, and Materials, 2015, 22: 688-696. doi: 10.1007/s12613-015-1123-x [13] LIN Y H, GUO Z C, TANG H Q. Reduction behavior with CO under micro-fluidized bed conditions[J]. Journal of Iron and Steel Research International, 2013, 20(2): 8-13. doi: 10.1016/S1006-706X(13)60049-7 [14] WONG P L M, KIM M J, KIM H S, et al. Sticking behaviour in direct reduction of iron ore[J]. Ironmaking & Steelmaking, 2013, 26(1): 53-57. [15] 赵志龙, 唐惠庆, 郭占成. CO还原Fe2O3过程中金属铁析出的微观行为[J]. 钢铁研究学报, 2012, 24(11): 23-28. [16] 赵志龙, 唐惠庆, 郭占成. CO气氛下还原Fe2O3过程中铁晶须生长的原位观察[C]// 2010年全国冶金物理化学学术会议专辑(上册), 北京: 中国水运月刊, 2010. [17] 朱凯荪, 王建军. 二步法熔融还原中流态化预还原过程的粘结机理及其预防的研究[J]. 华东冶金学院学报, 1989, 1(3): 47-54. [18] 齐渊洪, 许海川. 还原流化床内铁的析出形态与铁矿粉的粘结行为[J]. 钢铁研究学报, 1996, 2(5): 7-11. [19] WAGNER D, DEVISME O, PATISSON F, et al. A laboratory study of the reduction of iron oxides by hydrogen[J]. Physics, 2008, 43(44): 3302-3303. [20] HAYASHI S, IGUCHI Y. Factors affecting the sticking of fine iron ores during fluidized bed reduction[J]. Transactions of the Iron & Steel Institute of Japan, 1992, 32(9): 962-971. [21] 钟昇平, 郭磊, 丁智勇, 等. 铁矿粉气基直接还原过程中铁晶须生长观察[J]. 有色金属科学与工程, 2018, 9(01): 15-21. [22] 金永丽, 韩福铁, 于海, 等. 磁场对含SiO2和CaO的铁氧化物还原的影响[J]. 钢铁钒钛, 2018, 39(6): 103-109. [23] YIRU Y, LEI G, DONG Y L, et al. Numerical analysis of gasification characteristics in combined coal gasification and flash ironmaking process[J]. Applied Thermal Engineering, 2020, 171: 115067. [24] YANG Y R, LI D Y, GUO L, et al. Numerical simulation of the gasification-reduction coupling process in the innovative multi-generation system[J]. Applied Thermal Engineering, 2020, 168(C): 114899. [25] ELZOHIERY M, SOHN H Y, MOHASSAB Y. Kinetics of hydrogen reduction of magnetite concentrate particles in solid state relevant to flash ironmaking[J]. Steel Research International, 2017, 88: 1600133. doi: 10.1002/srin.201600133 [26] 胡涛, 路欣, 阎研, 等. 用纯铁氧化法生长的铁氧化物样品的拉曼光谱研究[J]. 光谱学与光谱分析, 2004, 24(9): 1072-1074. doi: 10.3321/j.issn:1000-0593.2004.09.013 [27] THIBEAU R J, BROWN C W, HEIDERSBACH R H. Raman spectra of possible corrosion products of iron[J]. Applied Spectroscopy, 1978, 32(6): 532-535. [28] YI L, HUANG Z, JIANG T. Sticking of iron ore pellets during reduction with hydrogen and carbon monoxide mixtures: Behavior and mechanism[J]. Powder Technology, 2013, 235(2): 1001-1007. [29] HALIM K S A, BAHGAT M, EL-KELESH H A, et al. Metallic iron whisker formation and growth during iron oxide reduction: Basicity effect[J]. Ironmaking & Steelmaking, 2009, 36(8): 631-640. [30] YANG X B, XIAO H U, CHEN Z Y, et al. Structure evolution in the reduction process of FeO powder by hydrogen[J]. Chinese Journal of Engineering, 2015, 1(5): 356-364. -