高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

铁精粉单颗粒高温还原过程中的演化特征

孙爽 沈中杰 朱玉龙 梁钦峰 刘海峰

孙爽, 沈中杰, 朱玉龙, 梁钦峰, 刘海峰. 铁精粉单颗粒高温还原过程中的演化特征[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20201127006
引用本文: 孙爽, 沈中杰, 朱玉龙, 梁钦峰, 刘海峰. 铁精粉单颗粒高温还原过程中的演化特征[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20201127006
SUN Shuang, SHEN Zhongjie, ZHU Yulong, LIANG Qinfeng, LIU Haifeng. Evolution Characteristics of Single Iron Concentrate Particle During the High-Temperature Reduction Process[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20201127006
Citation: SUN Shuang, SHEN Zhongjie, ZHU Yulong, LIANG Qinfeng, LIU Haifeng. Evolution Characteristics of Single Iron Concentrate Particle During the High-Temperature Reduction Process[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20201127006

铁精粉单颗粒高温还原过程中的演化特征

doi: 10.14135/j.cnki.1006-3080.20201127006
基金项目: 国家自然科学基金青年基金项目(21908063);中央高校基本科研业务费专项资金(222201814052)
详细信息
    作者简介:

    孙爽:孙 爽(1996—),男,硕士生,研究方向为高温气固反应

    通讯作者:

    沈中杰,zjshen@ecust.edu.cn

  • 中图分类号: TF557

Evolution Characteristics of Single Iron Concentrate Particle During the High-Temperature Reduction Process

  • 摘要: 采用高温热台显微镜原位研究了铁精粉单颗粒在高温及CO气氛下还原过程的演化特征。通过原位实验记录了铁精粉单颗粒的高温还原过程,并利用拉曼光谱仪验证了还原反应产物(单质铁)。结果表明,颗粒表面出现单质铁的时间受温度影响显著,受气体流量影响小。其中,当温度从1 100 ℃升至1 300 ℃时,单质铁的生成时间缩短约75%;当温度从1 300 ℃升至1 400 ℃时,单质铁的生成时间基本不变。当温度为1 100~1 350 ℃时,铁精粉颗粒在还原过程中表面会产生瘤状物,且瘤状物尺寸随着温度升高而增大。引入瘤状物长宽和的平均值为特征尺度l,当还原温度由1 100 ℃升高至1 350 ℃时,l由6 μm增大至15 μm。当还原温度高于1 400 ℃时,铁精粉颗粒出现熔融态的产物分层现象:内层为还原铁,中层为熔融氧化亚铁被还原的树根状金属铁,外层为含有Al、Ca和Si等元素集聚的铁渣。

     

  • 图  1  铁精粉的XRD图谱

    Figure  1.  XRD of iron concentrate particles

    图  2  高温热台显微镜的结构示意图

    Figure  2.  Structure diagram of HTSM

    图  3  1 300 ℃下铁精粉在CO(200 mL/min)气氛下还原10 min后与反应前的拉曼光谱对比图

    Figure  3.  Comparison of Raman after and before reduction at 1 300 ℃ and 200 mL/min CO for 10 min

    图  4  不同温度下CO(200 mL/min)还原铁精粉的过程

    Figure  4.  Process of reducing iron concentrate particle by CO (200 mL/min) at different temperatures

    图  5  铁精粉颗粒在不同的CO流量下生成单质铁的时间随温度的变化

    Figure  5.  Change of the time of elemental iron produced by iron concentrate particles with temperature under different CO flow rates

    图  6  1 400 ℃铁精粉颗粒还原反应后的SEM-EDS

    Figure  6.  SEM-EDS of iron concentrate particles after reduction reaction at 1 400 ℃

    图  7  1 400 ℃熔融部分面扫描结果

    Figure  7.  Results of melting part surface scanning at 1 400 ℃

    图  8  铁精粉颗粒在不同温度下的SEM

    Figure  8.  SEM of iron concentrate particles at different temperatures

    图  9  不同CO流量下瘤状物特征尺度随温度变化图

    Figure  9.  Characteristic scale of nodules varies with temperature under different CO flow rate

    图  10  低温(1 100 ~1 350 ℃)下铁精粉单颗粒还原生成铁单质的结构变化图

    Figure  10.  Structure change diagram of single-particle reduction of iron concentrate partical at low temperature (1 100 ~1 350 ℃) to produce iron

    图  11  高温(1 400 ℃以上)下铁精粉单颗粒还原生成铁单质的结构变化图

    Figure  11.  Structure change diagram of single-particle reduction of iron concentrate particle at high temperature (above 1 400 ℃) to produce iron

    表  1  铁精粉的化学组成

    Table  1.   Chemical composition of iron concentrate powder

    w/%
    TFeSiO2MgOCaOAl2O3
    53.0419.372.8976.521.46
    下载: 导出CSV

    表  2  各种铁氧化物的拉曼频率[26-27]

    Table  2.   Raman frequency of different iron oxide[26-27]

    SampleRaman shift/cm−1
    α-Fe2O3227 246 293 411 497 612 1 320
    Fe3O4302 513 534 663
    γ-FeOOH252 380 526 650 1 307
    下载: 导出CSV
  • [1] KARALI N, PARK W Y, MCNEIL M. Modeling technological change and its impact on energy savings in the U.S. iron and steel sector[J]. Applied Energy, 2017, 202: 447-458. doi: 10.1016/j.apenergy.2017.05.173
    [2] WU X, ZHAO L, ZHANG Y, et al. Cost and potential of energy conservation and collaborative pollutant reduction in the iron and steel industry in China[J]. Applied Energy, 2016, 184: 171-183. doi: 10.1016/j.apenergy.2016.09.094
    [3] HASANBEIGI A, ARENS M, PRICE L. Alternative emerging ironmaking technologies for energy-efficiency and carbon dioxide emissions reduction: A technical review[J]. Renewable and Sustainable Energy Reviews, 2014, 33: 645-658. doi: 10.1016/j.rser.2014.02.031
    [4] LU W K, JiANG X, YANG J L. Smelting reduction and direct reduction for alternative ironmaking[C]// 5th International Conference on Science and Technology of Ironmaking. Beijing: Journal of and Iron Steel Research, 2009, 16: 79-86.
    [5] CONSIDINE T J, JABLONOWSKI C, CONSIDINE D. The environment and new technology adoption in the US steel industry[J]. University Park, 2001, 5(3): 47-59.
    [6] CHEN H, ZHENG Z, CHEN Z, et al. Reduction of hema-tite (Fe2O3) to metallic iron (Fe) by CO in a micro fluidized bed reaction analyzer: A multistep kinetics study[J]. Powder Technology, 2017, 316: 410-420.
    [7] OH J, NOH D. The reduction kinetics of hematite particles in H2 and CO atmospheres[J]. Fuel, 2017, 196: 144-153. doi: 10.1016/j.fuel.2016.10.125
    [8] BOHN C D, CLEETON J P, MÜLLER C R, et al. The kinetics of the reduction of iron oxide by carbon monoxide mixed with carbon dioxide[J]. AIChE Journal, 2010, 56(4): 1016-1029.
    [9] CHEN F, MOHASSAB Y, JIANG T, et al. Hydrogen reduction kinetics of hematite concentrate particles relevant to a novel flash ironmaking process[J]. Metallurgical and Materials Transactions B, 2015, 46: 1133-1145. doi: 10.1007/s11663-015-0332-z
    [10] CHEN F, MOHASSAB Y, ZHANG S, et al. Kinetics of the reduction of hematite concentrate particles by carbon monoxide relevant to a novel flash ironmaking process[J]. Metallurgical and Materials Transactions B, 2015, 46: 1716-1728. doi: 10.1007/s11663-015-0345-7
    [11] CHOI M E, SOHN H Y. Development of green suspension ironmaking technology based on hydrogen reduction of iron oxide concentrate: Rate measurements[J]. Ironmaking & Steelmaking, 2010, 37: 81-88.
    [12] ZUO H, WANG C, DONG J, et al. Reduction kinetics of iron oxide pellets with H2 and CO mixtures[J]. International Journal of Minerals, Metallurgy, and Materials, 2015, 22: 688-696. doi: 10.1007/s12613-015-1123-x
    [13] LIN Y H, GUO Z C, TANG H Q. Reduction behavior with CO under micro-fluidized bed conditions[J]. Journal of Iron and Steel Research International, 2013, 20(2): 8-13. doi: 10.1016/S1006-706X(13)60049-7
    [14] WONG P L M, KIM M J, KIM H S, et al. Sticking behaviour in direct reduction of iron ore[J]. Ironmaking & Steelmaking, 2013, 26(1): 53-57.
    [15] 赵志龙, 唐惠庆, 郭占成. CO还原Fe2O3过程中金属铁析出的微观行为[J]. 钢铁研究学报, 2012, 24(11): 23-28.
    [16] 赵志龙, 唐惠庆, 郭占成. CO气氛下还原Fe2O3过程中铁晶须生长的原位观察[C]// 2010年全国冶金物理化学学术会议专辑(上册), 北京: 中国水运月刊, 2010: 5.
    [17] 朱凯荪, 王建军. 二步法熔融还原中流态化预还原过程的粘结机理及其预防的研究[J]. 华东冶金学院学报, 1989, 1(3): 47-54.
    [18] 齐渊洪, 许海川. 还原流化床内铁的析出形态与铁矿粉的粘结行为[J]. 钢铁研究学报, 1996, 2(5): 7-11.
    [19] WAGNER D, DEVISME O, PATISSON F, et al. A laboratory study of the reduction of iron oxides by hydrogen[J]. Physics, 2008, 43(44): 3302-3303.
    [20] HAYASHI S, IGUCHI Y. Factors affecting the sticking of fine iron ores during fluidized bed reduction[J]. Transactions of the Iron & Steel Institute of Japan, 1992, 32(9): 962-971.
    [21] 钟昇平, 郭磊, 丁智勇, 等. 铁矿粉气基直接还原过程中铁晶须生长观察[J]. 有色金属科学与工程, 2018, 9(01): 15-21.
    [22] 金永丽, 韩福铁, 于海, 等. 磁场对含SiO2和CaO的铁氧化物还原的影响[J]. 钢铁钒钛, 2018, 39(6): 103-109.
    [23] YIRU Y, LEI G, DONG Y L, et al. Numerical analysis of gasification characteristics in combined coal gasification and flash ironmaking process[J]. Applied Thermal Engineering, 2020, 171: 115067.
    [24] YANG Y R, LI D Y, GUO L, et al. Numerical simulation of the gasification-reduction coupling process in the innovative multi-generation system[J]. Applied Thermal Engineering, 2020, 168(C): 114899.
    [25] ELZOHIERY M, SOHN H Y, MOHASSAB Y. Kinetics of hydrogen reduction of magnetite concentrate particles in solid state relevant to flash ironmaking[J]. Steel Research International, 2017, 88: 1600133. doi: 10.1002/srin.201600133
    [26] 胡涛, 路欣, 阎研, 等. 用纯铁氧化法生长的铁氧化物样品的拉曼光谱研究[J]. 光谱学与光谱分析, 2004, 24(9): 1072-1074. doi: 10.3321/j.issn:1000-0593.2004.09.013
    [27] THIBEAU R J, BROWN C W, HEIDERSBACH R H. Application Spectrosc[M]. 1978, 32: 532.
    [28] YI L, HUANG Z, JIANG T. Sticking of iron ore pellets during reduction with hydrogen and carbon monoxide mixtures: Behavior and mechanism[J]. Powder Technology, 2013, 235(2): 1001-1007.
    [29] HALIM K S A, BAHGAT M, EL-KELESH H A, et al. Metallic iron whisker formation and growth during iron oxide reduction: Basicity effect[J]. Ironmaking & Steelmaking, 2009, 36(8): 631-640.
    [30] YANG X B, XIAO H U, CHEN Z Y, et al. Structure evolution in the reduction process of FeO powder by hydrogen[J]. Chinese Journal of Engineering, 2015, 1(5): 356-364.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  560
  • HTML全文浏览量:  447
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-27
  • 网络出版日期:  2021-01-07

目录

    /

    返回文章
    返回