Underlying Molecular Mechanism of EGCG Against MDA-MB-231 Cells Based on Network Pharmacology
-
摘要: 基于网络药理学分析绿茶中的主要多酚物质表没食子儿茶素没食子酸酯 (Epigallocatechin Gallate, EGCG)对三阴性乳腺癌细胞MDA-MB-231的潜在作用靶点及其分子机理。使用数据库检索EGCG和MDA-MB-231的潜在靶点,两者的靶点基因相互映射取交集,获得共同作用靶点;借助软件Cytoscape 3.8.0绘制“靶点-通路”网络互作图、String数据库构建靶点蛋白的互作网络关系 (Protein-Protein Interaction,PPI),基于Metascape平台对靶点进行基因本体论 (Gene Ontology,GO) 和京都基因与基因组百科全书 (Kyoto Encyclopedia of Genes and Genomes,KEGG) 富集分析;通过分子对接和体外实验验证预测结果。结果表明:通过挖掘,共获得EGCG靶点537个,MDA-MB-231靶点181个,取交集获得88个共同潜在靶点,进一步筛选保留30个核心作用靶点;获得20条核心GO生物进程和17条KEGG信号通路,涉及到癌症信号通路,毒性耐受通路,胰腺癌通路、直肠癌通路,小细胞肺癌通路等;分子对接结果显示,EGCG可以通过非共价键与β-连环蛋白 (β-catenin) 结合;体外实验表明,肝细胞生长因子 (Hepatocyte Growth Factor,HGF) 能够诱导β-catenin的表达,而EGCG能够抑制HGF诱导的β-catenin的表达上调。EGCG可以通过多靶点、多途径干预MDA-MB-231,已经初步证实EGCG可以影响HGF/β-catenin途径。
-
关键词:
- 表没食子儿茶素没食子酸酯 (EGCG) /
- 三阴性乳腺癌 /
- 网络药理学 /
- 分子对接 /
- 作用机理
Abstract: To screen out the potential targets and molecular mechanisms of Epigallocatechin gallate (EGCG) in the treatment of triple negative breast cancer (MDA-MB-231). Databases were used to explore the potential targets between EGCG and MDA-MB-231. The “target-pathway” networks of common targets were constructed using Cytoscape 3.8.0 software, while the String database was used to draw and analyze the PPI network. Subsequently, the core genes were submitted to the Metascape database for GO and KEGG enrichment analyses, the prediction results were verified through in vitro experiment. A total of 537 EGCG targets and 181 disaster targets were obtained, 30 key targets were retained by further screening from 88 common potential targets. The results of the enrichment analyses showed that the active targets were involved in 20 core GO biological processes and 17 KEGG signaling pathways. such as cancer signaling pathways, toxic tolerance pathways, pancreatic cancer pathways, rectal cancer pathways, small cell lung cancer pathways. Molecular docking illuminated that EGCG could interact with β-catenin in a non-covalent manner. The in vitro experiment revealed that HGF could induce the expression of β-catenin, and EGCG could repress the HGF-induced over-expression of β-catenin. EGCG inhibited cell viability through multiple targets and multiple pathways, so it has been basically confirmed that EGCG can affect the HGF / β-catenin pathway, providing a theoretical and practical basis for further mechanism exploration. -
表 1 EGCG和MDA-MB-231共同潜在靶点
Table 1. Common and potential targets for EGCG and MDA-MB-231
Gene Protein name MAPK14 Mitogen-activated protein kinase 14 AKT1 RAC-alpha serine/threonine-protein kinase MAPK3 Mitogen-activated protein kinase 3 SP1 Transcription factor Sp1 MAPK8 Mitogen-activated protein kinase 8 SRC Proto-oncogene tyrosine-protein kinase Src IGF1 Insulin-like growth factor I VEGFA Vascular endothelial growth factor A MET Hepatocyte growth factor receptor JUN Transcription factor AP-1 HGF Hepatocyte growth factor SMAD3 Mothers against decapentaplegic homolog 3 FOS Proto-oncogene c-Fos RB1 Retinoblastoma-associated protein ITGB1 Integrin beta-1 PTK2 Focal adhesion kinase 1 RELA Transcription factor p65 PIK3CA Phosphatidylinositol 3-kinase catalytic subunit alpha isoform BCL2L1 Bcl-2-like protein 1 STAT3 Signal transducer and activator of transcription 3 ESR1 Estrogen receptor NFKB1 Nuclear factor NF-kappa-B p105 subunit MAPK1 Mitogen-activated protein kinase 1 CDKN1A Cyclin-dependent kinase inhibitor 1 EGFR Epidermal growth factor receptor EGF Epidermal growth factor CTNNB1 Catenin beta-1 BCL2 Apoptosis regulator Bcl-2 CDH1 Cadherin-1 TP53 Cellular tumor antigen p53 -
[1] 仉燕崃, 李楠, 韩国柱. 表没食子儿茶素没食子酸酯的研究进展[J]. 中草药, 2006,37(2): 303-306. doi: 10.3321/j.issn:0253-2670.2006.02.056 [2] ZHU J, JIANG Y, YANG X, et al. Wnt/beta-catenin pathway mediates (-)-epigallocatechin-3-gallate (EGCG) inhibition of lung cancer stem cells[J]. Biochemical & Biophysical Research Communications, 2017, 482(1): 15-21. [3] MODERNELLI A, NAPONELLI V, GIOVANNA TROGLIO M, et al. EGCG antagonizes Bortezomib cytotoxicity in prostate cancer cells by an autophagic mechanism[J]. Scientific Reports, 2015, 5: 15270. doi: 10.1038/srep15270 [4] FU J D, YAO J J, WANG H, et al. Effects of EGCG on proliferation and apoptosis of gastric cancer SGC7901 cells via down-regulation of HIF-1 alpha and VEGF under a hypoxic state[J]. European Review for Medical and Pharmacological Sciences, 2019, 23(1): 155-161. [5] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer Journal For Clinicians, 2018, 68(6): 394-424. doi: 10.3322/caac.21492 [6] TORRE L A, ISLAMI F, SIEGEL R L, et al. Global cancer in women: Burden and trend[J]. Cancer Epidemiology Biomarkers & Prevention, 2017, 26(4): 444-457. [7] HUNTER K W, CRAWFORD N P, ALSARRAJ J. Mechanisms of metastasis[J]. Breast Cancer Research, 2008, 10 (Suppl 1): S2. [8] SHAH S P, ROTH A, GOYA R, et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers[J]. Nature, 2012, 486(7403): 395-399. doi: 10.1038/nature10933 [9] KAST K, LINK T, FRIEDRICH K, et al. Impact of breast cancer subtypes and patterns of metastasis on outcome[J]. Breast cancer research and treatment, 2015, 150(3): 621-629. doi: 10.1007/s10549-015-3341-3 [10] ZHANG L, XIE J, GAN R, et al. Synergistic inhibition of lung cancer cells by EGCG and NF-kappa B inhibitor BAY11-7082[J]. Journal of Cancer, 2019, 10(26): 6543-6556. doi: 10.7150/jca.34285 [11] CHEN Z P, SCHELL J B, HO C T, et al. Green tea epigallocatechin gallate shows pronounced growth inhibitory effect on cancerous cells but not their normal counterparts[J]. Cancer Letters, 1998, 129(2): 173-179. doi: 10.1016/S0304-3835(98)00108-6 [12] MITTAL A, PATE M S, WYLIE R C, et al. EGCG down-regulates telomerase in human breast carcinoma MCF-7 cells, leading to suppression of cell viability and induction of apoptosis[J]. International Journal of Oncology, 2004, 24(3): 703-710. [13] SAMSDODD F. Target-based drug discovery: Is something wrong?[J]. Drug Discovery Today, 2005, 10(2): 139-147. doi: 10.1016/S1359-6446(04)03316-1 [14] HOPKINS A L. Network pharmacology[J]. Nature Biotechnology, 2007, 25(10): 1110-1111. doi: 10.1038/nbt1007-1110 [15] GLASER V. An interview with Bryan Roth[J]. Assay and Drug Development Technologies, 2007, 5(5): 593-598. doi: 10.1089/adt.2007.9987 [16] SHAO L, ZHANG B. Traditional Chinese medicine network pharmacology: Theory, methodology and application-science direct[J]. Chinese Journal of Natural Medicine, 2013, 11(2): 110-120. [17] WANG J X, LI M, CHEN J E, et al. A fast hierarchical clustering algorithm for functional modules discovery in protein interaction networks[J]. IEEE-ACM Transactions on Computational Biology and Bioinformatics, 2011, 8(3): 607-620. doi: 10.1109/TCBB.2010.75 [18] 徐蓉蓉, 石汉平. 茶与肿瘤[C]//2012《广州国际肿瘤营养与支持治疗研讨会》. 广州: 中国抗癌协会, 2012. [19] HU D L, WANG G, YU J, et al. Epigallocatechin3gallate modulates long noncoding RNA and mRNA expression profiles in lung cancer cells[J]. Molecular Medicine Reports, 2019, 19(3): 1509-1520. [20] LI T, ZHAO N, LU J, et al. Epigallocatechin gallate (EGCG) suppresses epithelial-Mesenchymal transition (EMT) and invasion in anaplastic thyroid carcinoma cells through blocking of TGF-beta1/Smad signaling pathways[J]. Bioengineered, 2019, 10(1): 282-291. doi: 10.1080/21655979.2019.1632669 [21] GADDUCCI A, BIGLIA N, SISMONDI P, et al. Breast cancer and sex steroids: Critical review of epidemiological, experimental and clinical investigations on etiopathogenesis, chemoprevention and endocrine treatment of breast cancer[J]. Gynecol Endocrinol, 2005, 20(6): 343-360. doi: 10.1080/09513590500128492 [22] 许人元, 王晓东. 三阴性乳腺癌的治疗进展[J]. 中国普外基础与临床杂志, 2020, 27(8): 1033-1037. [23] 李小丽, 蔡永青, 周维英. 三阴性乳腺癌化疗及放疗增敏作用研究进展[J]. 中国临床药理学与治疗学, 2019, 24(3): 337-342. [24] WISEMAN B S, WERB Z. Stromal effects on mammary gland development and breast cancer[J]. Science, 2002, 296(5570): 1046-1049. doi: 10.1126/science.1067431 [25] STUART E C, JARVIS R M, ROSENGREN R J. In vitro mechanism of action for the cytotoxicity elicited by the combination of epigallocatechin gallate and raloxifene in MDA-MB-231 cells[J]. Oncology Reports, 2010, 24(3): 779-785. [26] SINGH N, ZAIDI D, SHYAM H, et al. Polyphenols sensitization potentiates susceptibility of MCF-7 and MDA MB-231 cells to centchroman[J]. PLoS One, 2012, 7(6): e37736. doi: 10.1371/journal.pone.0037736 [27] GIANFREDI V, VANNINI S, MORETTI M, et al. Sulforaphane and epigallocatechin gallate restore estrogen receptor expression by modulating epigenetic events in the breast cancer cell line MDA-MB-231: A systematic review and meta-analysis[J]. Journal of Nutrigenetics and Nutrigenomics, 2017, 10(3/4): 126-135. doi: 10.1159/000480636 [28] HANKER A B, SUDHAN D R, ARTEAGA C L. Overcoming endocrine resistance in breast cancer[J]. Cancer Cell, 2020, 37(4): 496-513. doi: 10.1016/j.ccell.2020.03.009 [29] LEI J T, GOU X, ELLIS M J. ESR1 fusions drive endocrine therapy resistance and metastasis in breast cancer[J]. Molecular & Cellular Oncology, 2018, 5(6): e1526005. [30] TURNER N, PEARSON A, SHARPE R, et al. FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer[J]. Cancer Research, 2010, 70(5): 2085-2094. doi: 10.1158/0008-5472.CAN-09-3746 [31] 鲁莉, 潘虹, 石朋飞. FoxO1过表达对甲状腺乳头状癌细胞增殖、凋亡和细胞周期的影响及其机制[J]. 山东医药, 2020, 60(8): 34-37. doi: 10.3969/j.issn.1002-266X.2020.08.008 [32] BIGELOW R L, CARDELLI J A. The green tea catechins, (−)-Epigallocatechin-3-gallate (EGCG) and (−)-Epicatechin-3-gallate (ECG), inhibit HGF/Met signaling in immortalized and tumorigenic breast epithelial cells[J]. Oncogene, 2006, 25(13): 1922-1930. doi: 10.1038/sj.onc.1209227 [33] SEN T, CHATTERJEE A. Epigallocatechin-3-gallate (EGCG) downregulates EGF-induced MMP-9 in breast cancer cells: Involvement of integrin receptor α5β1 in the process[J]. European Journal of Nutrition, 2011, 50(6): 465-478. doi: 10.1007/s00394-010-0158-z [34] HONG O Y, NOH E M, JANG H Y, et al. Epigallocatechin gallate inhibits the growth of MDA-MB-231 breast cancer cells via inactivation of the beta-catenin signaling pathway[J]. Oncology Letters, 2017, 14(1): 441-446. doi: 10.3892/ol.2017.6108 [35] TIAN W, HAN X, YAN M, et al. Structure-based discovery of a novel inhibitor targeting the beta-catenin/Tcf4 interaction[J]. Biochemistry, 2012, 51(2): 724-731. doi: 10.1021/bi201428h [36] MIURA H, NISHIMURA K, TSUJIMURA A, et al. Effects of hepatocyte growth factor on E-cadherin-mediated cell-cell adhesion in DU145 prostate cancer cells[J]. Urology, 2002, 58: 1064-1069. [37] SHIBAMOTO S, HAYAKAWA M, TAKEUCHI K, et al. Tyrosine phosphorylation of p-catenin and plakoglobin enhanced by hepatocyte growth factor and epidermal growth factor in human carcinoma cell[J]. Cell Communication and Adhesion, 1994, 1(4): 295-305. doi: 10.3109/15419069409097261 -