高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

页岩气链式重整制甲醇集成SOFC过程设计及分析

项东 李鹏 袁孝友 曹慧菊 柳凌晨

项东, 李鹏, 袁孝友, 曹慧菊, 柳凌晨. 页岩气链式重整制甲醇集成SOFC过程设计及分析[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20201125001
引用本文: 项东, 李鹏, 袁孝友, 曹慧菊, 柳凌晨. 页岩气链式重整制甲醇集成SOFC过程设计及分析[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20201125001
XIANG Dong, LI Peng, YUAN Xiaoyou, CAO Huiju, LIU Lingchen. Design and analysis of shale gas chemical looping reforming to methanol combined with solid oxide fuel cell process[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20201125001
Citation: XIANG Dong, LI Peng, YUAN Xiaoyou, CAO Huiju, LIU Lingchen. Design and analysis of shale gas chemical looping reforming to methanol combined with solid oxide fuel cell process[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20201125001

页岩气链式重整制甲醇集成SOFC过程设计及分析

doi: 10.14135/j.cnki.1006-3080.20201125001
基金项目: 国家自然科学基金项目(21706001; 22078001)和安徽省自然科学基金项目(1808085QB46)
详细信息
    作者简介:

    项东:项 东(1985—),男,安徽六安人,博士,副教授,E-mail:xiangdong@ahu.edu.cn

  • 中图分类号: TE646

Design and analysis of shale gas chemical looping reforming to methanol combined with solid oxide fuel cell process

  • 摘要: 建立了页岩气化学链重整制甲醇联合固体燃料电池发电过程模型,并通过原料消耗、产品产出、过程能耗和㶲效率等指标对新流程进行技术分析。通过化学链重整制合成气和氢气及甲醇合成来实现页岩气的高效利用,通过将剩余氢气用于固体燃料电池发电和弛放气化学链燃烧供热实现了电能自给并有盈余。还探讨了不同甲烷转化率对新过程技术性能的影响,甲烷转化率为60%的过程㶲效率仅为57%,而甲烷转化率为80%~99.3%的过程㶲效率高达71%~74%。

     

  • 图  1  页岩气化学链重整制甲醇联合SOFC发电新过程流程图

    Figure  1.  Process flow diagram of a novel SG chemical looping reforming to methanol combined with SOFC for power generation

    图  2  载氧体循环量对甲烷转化率、热负荷、H2/CO及重整气产量的影响

    Figure  2.  Effect of the oxygen carrier circulation quantity on methane conversion, heat duty, H2/CO, and reformed gas flow

    图  3  甲烷转化率对重整气产量及热负荷的影响

    Figure  3.  Effect of the methane conversion rate on syngas production and heat duty

    图  4  甲烷转化率对页岩气消耗、氢气和甲醇产量及CO2捕集和排放的影响

    Figure  4.  Effect of the methane conversion rate on SG consumption, hydrogen and methanol production, and CO2 capture and emissions

    图  5  甲烷转化率对SOFC产电量和电压的影响

    Figure  5.  Effect of the methane conversion rate on the power generation and voltage of the SOFC

    图  6  甲烷转化率对㶲输入、输出和㶲效率的影响

    Figure  6.  Effect of the methane conversion rate on exergy input, output, and exergy efficiency

    图  7  本研究结果与文献[17]结果比较

    Figure  7.  Comparison between the results of this study and reference[17]

  • [1] LI W, ZHUNG Y, LIU L, et al. Process evaluation and optimization of methanol production from shale gas based on kinetics modeling[J]. Journal of Cleaner Production, 2020, 274: 123153. doi: 10.1016/j.jclepro.2020.123153
    [2] 曹勃. 页岩气的开发和综合利用[J]. 石油化工设计, 2019, 36(2): 69-72.
    [3] 杨杰, 常辉, 隋志军, 等. 化学链催化甲烷氧化反应研究进展[J]. 化工进展, 2020. doi: 10.16085/j.issn.1000-6613.2020-2153
    [4] ZHAO K, HE F, HUANG Z, et al. Perovskite-type oxides LaFe1-xCoxO3 for chemical looping steam methane reforming to syngas and hydrogen co-production[J]. Applied Energy, 2016, 168: 193-203. doi: 10.1016/j.apenergy.2016.01.052
    [5] XIANG D, LI P, YUAN X. System optimization and performance evaluation of shale gas chemical looping reforming process for efficient and clean production of methanol and hydrogen[J]. Energy Conversion and Management, 2020, 220: 113099. doi: 10.1016/j.enconman.2020.113099
    [6] HUANG Y, TURAN A. Mechanical equilibrium operation integrated modelling of hybrid SOFC-GT systems: design analyses and off-design optimization[J]. Energy, 2020, 208: 118334. doi: 10.1016/j.energy.2020.118334
    [7] BAO C, WANG Y, FENG D L, et al. Macroscopic modeling of solid oxide fuel cell (SOFC) and model-based control of SOFC and gas turbine hybrid system[J]. Progress in Energy and Combustion Science, 2018, 66: 83-140. doi: 10.1016/j.pecs.2017.12.002
    [8] XIANG D, LI P, YUAN X, et al. Highly efficient carbon utilization of coal-to-methanol process integrated with chemical looping hydrogen and air separation technology: Process modeling and parameter optimization[J]. Journal of Cleaner Production, 2020, 258: 120910. doi: 10.1016/j.jclepro.2020.120910
    [9] 马宏方, 刘殿华, 应卫勇. 8 MPa下C307催化剂上甲醇合成反应的本征动力学[J]. 华东理工大学学报(自然科学版), 2008, 34(1): 6-9.
    [10] XENOS D P, HOFMANN P, PANOPOULOS K D, et al. Detailed transient thermal simulation of a plannar SOFC (solid oxide fuel cell) using gPROMSTM[J]. Energy, 2015, 81: 84-102. doi: 10.1016/j.energy.2014.11.049
    [11] EI-HAY E A, EI-HAMEED M A, EI-FERGANY A A. Optimized parameters of SOFC for steady state and transient simulations using interior search algorithm[J]. Energy, 2019, 166: 451-461. doi: 10.1016/j.energy.2018.10.038
    [12] 蒙青山, 孔令健, 张涛等. 基于SOFC/GT和跨临界CO2联合循环系统热力性能研究[J]. 太阳能学报, 2017, 38(10): 2778-2784.
    [13] TIPPAWAN P, ARPORNWICHANOP A. Energy and exergy analysis of an ethanol reforming process for solid oxide fuel cell applications[J]. Bioresource Technology, 2014, 157: 231-239. doi: 10.1016/j.biortech.2014.01.113
    [14] XIANG D, HUANG W, CAI M, et al. Process modeling, simulation, and technical analysis of coke-oven gas solid oxide fuel cell integrated with anode off-gas recirculation and CLC for power generation[J]. Energy Conversion and Management, 2019, 190: 34-41. doi: 10.1016/j.enconman.2019.03.091
    [15] NADGOUDA S G, GUO M, TONG A, et al. High purity syngas and hydrogen coproduction using copper-iron oxygen carriers in chemical looping reforming process[J]. Applied Energy, 2019, 235: 1415-1426. doi: 10.1016/j.apenergy.2018.11.051
    [16] IM-ORB K, PHAN A N, ARPORNWICHANOP A. Bio-methanol production from oil palm residues: A thermodynamic analysis[J]. Energy Convers Manage, 2020, 226: 113493. doi: 10.1016/j.enconman.2020.113493
    [17] LIU X, HONG H, ZHANG H, et al. Solar methanol by hybridizing natural gas chemical looping reforming with solar heat[J]. Applied Energy, 2020, 277: 115521. doi: 10.1016/j.apenergy.2020.115521
  • 加载中
图(7)
计量
  • 文章访问数:  223
  • HTML全文浏览量:  145
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-25
  • 网络出版日期:  2021-03-24

目录

    /

    返回文章
    返回