[1] |
LI W, ZHUNG Y, LIU L, et al. Process evaluation and optimization of methanol production from shale gas based on kinetics modeling[J]. Journal of Cleaner Production, 2020, 274: 123153. doi: 10.1016/j.jclepro.2020.123153
|
[2] |
曹勃. 页岩气的开发和综合利用[J]. 石油化工设计, 2019, 36(2): 69-72.
|
[3] |
杨杰, 常辉, 隋志军, 等. 化学链催化甲烷氧化反应研究进展[J]. 化工进展, 2020, 40(4): 1928-1947. doi: 10.16085/j.issn.1000-6613.2020-2153
|
[4] |
ZHAO K, HE F, HUANG Z, et al. Perovskite-type oxides LaFe1-xCoxO3 for chemical looping steam methane reforming to syngas and hydrogen co-production[J]. Applied Energy, 2016, 168: 193-203. doi: 10.1016/j.apenergy.2016.01.052
|
[5] |
XIANG D, LI P, YUAN X. System optimization and performance evaluation of shale gas chemical looping reforming process for efficient and clean production of methanol and hydrogen[J]. Energy Conversion and Management, 2020, 220: 113099. doi: 10.1016/j.enconman.2020.113099
|
[6] |
HUANG Y, TURAN A. Mechanical equilibrium operation integrated modelling of hybrid SOFC-GT systems: Design analyses and off-design optimization[J]. Energy, 2020, 208: 118334. doi: 10.1016/j.energy.2020.118334
|
[7] |
BAO C, WANG Y, FENG D L, et al. Macroscopic modeling of solid oxide fuel cell (SOFC) and model-based control of SOFC and gas turbine hybrid system[J]. Progress in Energy and Combustion Science, 2018, 66: 83-140. doi: 10.1016/j.pecs.2017.12.002
|
[8] |
XIANG D, LI P, YUAN X, et al. Highly efficient carbon utilization of coal-to-methanol process integrated with chemical looping hydrogen and air separation technology: Process modeling and parameter optimization[J]. Journal of Cleaner Production, 2020, 258: 120910. doi: 10.1016/j.jclepro.2020.120910
|
[9] |
马宏方, 刘殿华, 应卫勇. 8 MPa下C307催化剂上甲醇合成反应的本征动力学[J]. 华东理工大学学报(自然科学版), 2008, 34(1): 6-9.
|
[10] |
XENOS D P, HOFMANN P, PANOPOULOS K D, et al. Detailed transient thermal simulation of a plannar SOFC (solid oxide fuel cell) using gPROMSTM[J]. Energy, 2015, 81: 84-102. doi: 10.1016/j.energy.2014.11.049
|
[11] |
EI-HAY E A, EI-HAMEED M A, EI-FERGANY A A. Optimized parameters of SOFC for steady state and transient simulations using interior search algorithm[J]. Energy, 2019, 166: 451-461. doi: 10.1016/j.energy.2018.10.038
|
[12] |
蒙青山, 孔令健, 张涛等. 基于SOFC/GT和跨临界CO2联合循环系统热力性能研究[J]. 太阳能学报, 2017, 38(10): 2778-2784.
|
[13] |
TIPPAWAN P, ARPORNWICHANOP A. Energy and exergy analysis of an ethanol reforming process for solid oxide fuel cell applications[J]. Bioresource Technology, 2014, 157: 231-239. doi: 10.1016/j.biortech.2014.01.113
|
[14] |
XIANG D, HUANG W, CAI M, et al. Process modeling, simulation, and technical analysis of coke-oven gas solid oxide fuel cell integrated with anode off-gas recirculation and CLC for power generation[J]. Energy Conversion and Management, 2019, 190: 34-41. doi: 10.1016/j.enconman.2019.03.091
|
[15] |
NADGOUDA S G, GUO M, TONG A, et al. High purity syngas and hydrogen coproduction using copper-iron oxygen carriers in chemical looping reforming process[J]. Applied Energy, 2019, 235: 1415-1426. doi: 10.1016/j.apenergy.2018.11.051
|
[16] |
IM-ORB K, PHAN A N, ARPORNWICHANOP A. Bio-methanol production from oil palm residues: A thermodynamic analysis[J]. Energy Convers Manage, 2020, 226: 113493. doi: 10.1016/j.enconman.2020.113493
|
[17] |
LIU X, HONG H, ZHANG H, et al. Solar methanol by hybridizing natural gas chemical looping reforming with solar heat[J]. Applied Energy, 2020, 277: 115521. doi: 10.1016/j.apenergy.2020.115521
|