高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

酶响应型菊酯/二氧化硅纳米粒的制备及性质

余圣 方夏伦 邹爱华

余圣, 方夏伦, 邹爱华. 酶响应型菊酯/二氧化硅纳米粒的制备及性质[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20201010001
引用本文: 余圣, 方夏伦, 邹爱华. 酶响应型菊酯/二氧化硅纳米粒的制备及性质[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20201010001
YU Sheng, FANG Xialun, ZOU Aihua. Preparation and Characterization of Enzyme-Responsive LC/HMS Nanoparticles[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20201010001
Citation: YU Sheng, FANG Xialun, ZOU Aihua. Preparation and Characterization of Enzyme-Responsive LC/HMS Nanoparticles[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20201010001

酶响应型菊酯/二氧化硅纳米粒的制备及性质

doi: 10.14135/j.cnki.1006-3080.20201010001
基金项目: 国家自然科学基金(21872051);国家重点研发计划(2017YFD0200306)
详细信息
    作者简介:

    余圣:余 圣(1995-),男,硕士生,主要研究方向为刺激响应型纳米粒的制备。E-mail:ecustys@163.com

    通讯作者:

    邹爱华,E-mail:aihuazou@ecust.edu.cn

  • 中图分类号: TQ450.1

Preparation and Characterization of Enzyme-Responsive LC/HMS Nanoparticles

  • 摘要: 以高效氯氟氰菊酯(LC)为模型药物,通过物理吸附作用将LC负载在氨基化中空介孔二氧化硅(HMSN)纳米粒中,通过酰胺化反应在HMSN表面接枝羧甲基-β-环糊精(CM-β-CD)作为封堵分子,制备得到α-淀粉酶响应型CM-β-CD/LC/HMSN纳米粒。通过傅里叶变换红外光谱(FT-IR)、N2物理吸附-脱附及Zeta电位测试等实验证实该纳米粒制备的可行性。体外释放实验结果表明,在α-淀粉酶存在的条件下,CM-β-CD/LC/HMSN中LC的释放率可达55%,在无酶条件下LC的释放率仅约为20%,表明该农药配方的酶依赖性较强。分别采用浸叶法和浸虫法测定CM-β-CD/LC/HMSN对黏虫幼虫的杀虫活性,浸叶法测定结果表明CM-β-CD/LC/HMSN对黏虫幼虫具有良好的杀虫效果,但浸虫法效果较差。这一差异的原因可能是CM-β-CD/LC/HMSN在靶标幼虫体内可酶解环糊精从而释放LC,导致黏虫幼虫死亡。

     

  • 图  1  HMSN的透射电镜图

    Figure  1.  TEM image of HMSN

    图  2  HMS、HMSN和CM-β-CD/HMSN的红外光谱图

    Figure  2.  FT-IR spectra of HMS, HMSN and CM-β-CD/HMSN

    图  3  HMSN和CM-β-CD/HMSN的N2吸附-脱附等温线(a)和孔径分布(b)

    Figure  3.  N2 Adsorption-desorption isotherm (a) and pore size distribution (b) of HMSN and CM-β-CD/HMSN

    图  4  HMSN和CM-β-CD/HMSN的XRD图谱

    Figure  4.  XRD patterns of HMSN and CM-β-CD/HMSN

    图  5  CM-β-CD/LC/HMSN的制备过程示意图

    Figure  5.  Preparation process of CM-β-CD/LC/HMSN

    图  6  HMS、HMSN、LC/HMSN、CM-β-CD/HMSN和CM-β-CD/LC/HMSN的Zeta电位(图中的误差条代表标准差(n = 3))

    Figure  6.  Zeta potential of HMS, HMSN, LC/HMSN, CM-β-CD/HMSN and CM-β-CD/LC/HMSN (Error bars in the graph represent standard deviations (n = 3))

    图  7  HMSN、LC/HMSN和CM-β-CD/LC/HMSN的TGA曲线

    Figure  7.  TGA curves of HMSN、LC/HMSN and CM-β-CD/LC/HMSN

    图  8  LC/HMSN和CM-β-CD/LC/HMSN在DMF与水混合溶液(体积比6∶4)中的释放曲线(图中的误差条代表标准差(n = 3))

    Figure  8.  Release curves of LC/HMSN and CM-β-CD/LC/HMSN in DMF aqueous solution (V(DMF):V(H2O)=6∶4) (Error bars in the graph represent standard deviations (n = 3))

    图  9  CM-β-CD/LC/HMSN与LC在浸叶法(a)与浸虫法(b)下对黏虫的致死率(图中的误差条代表标准差(n = 3))

    Figure  9.  Mortality of CM-β-CD/LC/HMSN and LC for Mythimna separata in larva dipping method (a) and leaf dipping method (b) (Error bars in the graph represent standard deviations (n = 3))

    表  1  HMSN和CM-β-CD/HMSN的孔结构参数

    Table  1.   Pore structure parameters of HMSN and CM-β-CD/HMSN

    SampleSBET/(m2·g−1)Vt/(cm3·g−1)Dp/nm
    HMSN473.280.302.45
    CM-β-CD/HMSN51.680.08
    下载: 导出CSV

    表  2  浸叶法与浸虫法时CM-β-CD/LC/HMSN与LC对黏虫的杀虫活性

    Table  2.   Insecticidal activity of CM-β-CD/LC/HMSN and LC to Mythimna separata in larva dipping method and leaf dipping method

    SampleTreatmentsToxicity regression equationρ(LC50)/(mg·L−1)95% Fiducial limit/(mg·L−1)
    CM-β-CD/LC/HMSNLeaf dippingY=2.14+2.19X20.1213.06~30.99
    CM-β-CD/LC/HMSNLarva dippingY=2.49+1.17X135.24115.90~157.81
    LCLeaf dippingY=3.59+3.65X2.431.37~4.30
    LCLarva dippingY=2.83+1.83X15.2413.91~16.70
    X=lg ρ(LC50),Y represents death rates
    下载: 导出CSV
  • [1] JAI V, DUBEY N K. Prospective of botanical and microbial products as pesticides of tomorrow[J]. Current Science, 1999, 76(2): 172-179.
    [2] GUO M, ZHANG W, DING G, et al. Preparation and characterization of enzyme-responsive emamectin benzoate microcapsules based on a copolymer matrix of silica-epichlorohydrin-carboxymethylcellulose[J]. RSC Advances, 2015, 5: 93170-93179. doi: 10.1039/C5RA17901G
    [3] QIN P S, XU X H, CAI Y, et al. Fabrication of phytic acid-modified wheat straw platform and its pH-responsive release performance for the pesticide imidacloprid[J]. RSC Advances, 2017, 7(52): 32777-32785. doi: 10.1039/C7RA04354F
    [4] XU Z P, GAO Z H, SHAO X S. Light-triggered release of insecticidally active spirotetramat-enol[J]. Chinese Chemical Letters, 2018, 29(11): 116-118.
    [5] GAO Y H, XIAO Y N, HE S, et al. Thermoresponsive polymer-encapsulated hollow mesoporous silica nanoparticles and their application in insecticide delivery[J]. Chemical Engineering Journal, 2020, 383: 123169. doi: 10.1016/j.cej.2019.123169.
    [6] GUAN W X, ZHANG W X, TANG L M, et al. Fabrication of novel avermectin nanoemulsion using a polyurethane emulsifier with cleavable disulfide bonds[J]. Journal of Agricultural and Food Chemistry, 2018, 66(26): 6569-6577. doi: 10.1021/acs.jafc.7b01427
    [7] DING K K, SHI L Y, ZHANG L, et al. Synthesis of photoresponsive polymeric propesticide micelles based on PEG for the controlled release of a herbicide[J]. Polymer Chemistry, 2016, 7(4): 899-904. doi: 10.1039/C5PY01690H
    [8] SHENG W B, MA S H, LI W, et al. A facile route to fabricate a biodegradable hydrogel for controlled pesticide release[J]. RSC Advances, 2015, 5(18): 13867-13870. doi: 10.1039/C4RA15139A
    [9] YI Z F, FENG C F, SUN D Q, et al. Functionalized mesoporous silica nanoparticles with redox-responsive short-chain gatekeepers for agrochemical delivery[J]. ACS Applied Materials & Interfaces, 2015, 7(18): 9937-9946.
    [10] JIANG X F, LUO L Z, ZHANG L, et al. Regulation of migration in Mythimna separata (Walker) in China: A review integrating environmental, physiological, hormonal, genetic, and molecular factors[J]. Environmental Entomology, 2011, 40: 516-533. doi: 10.1603/EN10199
    [11] XU W P, HUANG Q C, WU X W, et al. Property of midgut α-amylase from Mythimna separata (Lepidoptera: Noctuidae) larvae and its responses to potential inhibitors in vitro[J]. Journal of Insect Science (Online), 2014, 14. doi: 10.1093/jisesa/ieu/44.
    [12] HUANG L, LIU J, GAO F, et al. A dual-responsive, hyaluronic acid targeted drug delivery system based on hollow mesoporous silica nanoparticles for cancer therapy[J]. Journal of Materials Chemistry: B. Materials for Biology and Medicine, 2018, 6(28): 4618-4629. doi: 10.1039/C8TB00989A
    [13] ROAYA M A A, MANTEGHI F, HAGHVERDI M. Synthesis and characterization of hollow mesoporous silica spheres and studying the load and release of dexamethasone[J]. Silicon, 2019, 11(3): 1401-1411. doi: 10.1007/s12633-018-9943-8
    [14] ZHANG W B, WANG Y, LI Z, et al. Synthesis and characterization of hyaluronic acid modified colloidal mesoporous silica nanoparticles[J]. IOP Conference Series: Materials Science and Engineering, 2018, 275: 012009.
    [15] POPAT A, LIU J, HU Q H, et al. Adsorption and release of biocides with mesoporous silica nanoparticles[J]. Nanoscale, 2012, 4(3): 970-975. doi: 10.1039/C2NR11691J
    [16] GUHA A, BISWAS N, BHATTACHARJEE K, et al. pH responsive cylindrical MSN for oral delivery of insulin-design, fabrication and evaluation[J]. Drug Delivery, 2016, 23(9): 3552-3561. doi: 10.1080/10717544.2016.1209796
    [17] BRIGANTE M, AVENA M. Synthesis, characterization and application of a hexagonal mesoporous silica for pesticide removal from aqueous solution[J]. Microporous and Mesoporous Materials, 2014, 191: 1-9. doi: 10.1016/j.micromeso.2014.02.035
    [18] JAVADIAN H, KOUTENAEI B B, SHEKARIAN E, et al. Application of functionalized nano HMS type mesoporous silica with N-(2-aminoethyl)-3-aminopropyl methyldimethoxysilane as a suitable adsorbent for removal of Pb (II) from aqueous media and industrial wastewater[J]. Journal of Saudi Chemical Society, 2017, 21: S219-S230. doi: 10.1016/j.jscs.2014.01.007
    [19] SHAO M, CHANG C, LIU Z H, et al. Polydopamine coated hollow mesoporous silica nanoparticles as pH-sensitive nanocarriers for overcoming multidrug resistance[J]. Colloids and Surfaces: B. Biointerfaces, 2019, 183: 110427. doi: 10.1016/j.colsurfb.2019.110427.
    [20] KAZIEM A E, GAO Y H, ZHANG Y, et al. α-Amylase triggered carriers based on cyclodextrin anchored hollow mesoporous silica for enhancing insecticidal activity of avermectin against Plutella xylostella[J]. Journal of Hazardous Materials, 2018, 359: 213-221. doi: 10.1016/j.jhazmat.2018.07.059
    [21] KAZIEM A E, GAO Y H, HE S, et al. Synthesis and insecticidal activity of enzyme-triggered functionalized hollow mesoporous silica for controlled release[J]. Journal of Agricultural and Food Chemistry, 2017, 65(36): 7854-7864. doi: 10.1021/acs.jafc.7b02560
    [22] ERDOGAN P, YILMAZ B. Insecticidal effect of three different plant extracts on potato tuber moth (Phthorimaea operculella Zeller (Lep. : Gelechiidae))[J]. Journal of Food Science and Engineering, 2018, 8: 215-221.
    [23] DESHMUKH S, PAVITHRA H B, KALLESHWARASWAMY C M, et al. Field efficacy of insecticides for management of invasive fall armyworm, spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) on Maize in India[J]. Florida Entomologist, 2020, 103(2): 221-227. doi: 10.1653/024.103.0211
    [24] FAN C, GUO M C, LIANG Y, et al. Pectin-conjugated silica microcapsules as dual-responsive carriers for increasing the stability and antimicrobial efficacy of kasugamycin[J]. Carbohydrate Polymers, 2017, 172: 322-331. doi: 10.1016/j.carbpol.2017.05.050
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  528
  • HTML全文浏览量:  374
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-10
  • 网络出版日期:  2020-12-16

目录

    /

    返回文章
    返回