高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

瞬时纳米沉淀法调控纳米结构及其在农业上的应用

王铭纬 俞洁 赵洪阳 付智楠 陈凯 王俊有 徐益升 MartienA. Cohen Stuart 郭旭虹

王铭纬, 俞洁, 赵洪阳, 付智楠, 陈凯, 王俊有, 徐益升, MartienA. Cohen Stuart, 郭旭虹. 瞬时纳米沉淀法调控纳米结构及其在农业上的应用[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20200929002
引用本文: 王铭纬, 俞洁, 赵洪阳, 付智楠, 陈凯, 王俊有, 徐益升, MartienA. Cohen Stuart, 郭旭虹. 瞬时纳米沉淀法调控纳米结构及其在农业上的应用[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20200929002
WANG Mingwei, YU Jie, ZHAO Hongyang, FU Zhinan, CHEN Kai, WANG Junyou, XU Yisheng, Martien A. Cohen Stuart, GUO Xuhong. Nanostructure Controlled by Flash Nanoprecipitation and Application on Agriculture[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20200929002
Citation: WANG Mingwei, YU Jie, ZHAO Hongyang, FU Zhinan, CHEN Kai, WANG Junyou, XU Yisheng, Martien A. Cohen Stuart, GUO Xuhong. Nanostructure Controlled by Flash Nanoprecipitation and Application on Agriculture[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20200929002

瞬时纳米沉淀法调控纳米结构及其在农业上的应用

doi: 10.14135/j.cnki.1006-3080.20200929002
基金项目: 国家自然科学基金青年基金(21706074)
详细信息
    作者简介:

    王铭纬(1989—),男,河南人,博士,讲师,主要研究方向为瞬时纳米沉淀法调控纳米结构。E-mail:mingweiwang@ecust.edu.cn

    通讯作者:

    郭旭虹,E-mail:guoxuhong@ecust.edu.cn

  • 中图分类号: TQ317.9

Nanostructure Controlled by Flash Nanoprecipitation and Application on Agriculture

  • 摘要: 农药的减量增效是近年来农药领域的关键问题,使用纳米载体技术将农药制成纳米农药为解决这一难题提供了新思路。不同于大多数基于热力学平衡组装的纳米载体技术,新兴的瞬时纳米沉淀法基于动力学控制原理、通过化学工程上的流体湍流混合方式制备纳米材料。这种方法不仅具有载药率高、制备时间短、易于放大与连续化生产等特点,还可以系统地调控纳米微观结构,如形貌、内部结构、表面结构等,为纳米材料在农药领域进一步的高效和低毒利用提供帮助。本文综述了瞬时纳米沉淀法在纳米结构调控及农业上的应用。

     

  • 图  1  封闭撞击流混合器(CIJ)(a),多通道涡流混合器(MIVM)(b)和适用于大流量的MIVM (c)[19, 40]

    Figure  1.  Confined Impinging Jets (CIJ) (a), Multi-Inlet Vortex Mixer (MIVM) (b) and MIVM for higher flow rate (c)[19, 40]

    图  2  FNP法制备纳米粒子示意图

    Figure  2.  Illustration of nanoparticle preparation by FNP

    图  3  逆向FNP包载亲水性溶质[43]

    Figure  3.  iFNP encapsulates water-soluble solute[43]

    图  4  FNP法调控纳米粒子的形貌(a)和内部结构 (b)[44-45]

    Figure  4.  Morphology (a) and internal structure (b) controlled by FNP[44-45]

    图  5  FNP法制备聚合物微球(a),Janus纳米粒子(b)和聚电解质纳米粒子 (c)[46, 50, 58]

    Figure  5.  Polymer colloid (a), Janus nanoparticle (b) and polyelectrolyte nanoparticle prepared by FNP (c)[46, 50, 58]

    图  6  表面修饰有叶酸基团的纳米粒子[62]

    Figure  6.  Nanoparticle modified with folic group on surface[62]

    图  7  FNP法制备不同形貌负载阿维菌素(a)和负载λ-氯氟氰菊酯载药纳米粒子及其应用 (b)[64-66]

    Figure  7.  Schematic illustrating the FNP method for preparing abamectin-loaded (a) and λ-cyhalothrin-loaded nanoparticles and bioassay (b)[64-66]

    表  1  用于调控纳米粒子微观结构的两亲性嵌段聚合物

    Table  1.   Diblock copolymer used for controlling the nanostructure

    Block copolymerFull name of block copolymerMolecular structure
    PEG-b-PCLPolyethylene glycol-b- polycaprolactone
    PEG-b-PLAPolyethylene glycol-b- polylactide
    PEG-b-PLGAPolyethylene glycol-b-poly (lactic-co-glycolic acid)
    Dextran-b-PCLDextran-b-polycaprolactone
    Dextran-b-PLADextran-b-polylactide
    Dextran-b-PLGADextran-b-poly (lactic-co-glycolic acid)
    下载: 导出CSV
  • [1] 邢艳辉. 我国绿色农业发展存在的问题及对策[J]. 乡村科技, 2020, 11(23): 33-35. doi: 10.3969/j.issn.1674-7909.2020.23.018
    [2] 宋俊华, 顾宝根. 国际农药管理的现状及趋势(下)[J]. 农药科学与管理, 2020, 41(1): 8-13.
    [3] 宋俊华, 顾宝根. 国际农药管理的现状及趋势(上)[J]. 农药科学与管理, 2019, 40(12): 9-14. doi: 10.3969/j.issn.1002-5480.2019.12.004
    [4] 中国农药信息网. 李克强签署国务院令公布修订后的《农药管理条例》[J]. 世界农药, 2017, 39(2): 13.
    [5] ZHAO L, LU L, WANG A, et al. Nano-biotechnology in agriculture: Use of nanomaterials to promote plant growth and stress tolerance[J]. Journal of Agricultural and Food Chemistry, 2020, 68(7): 1935-1947. doi: 10.1021/acs.jafc.9b06615
    [6] KAH M, HOFMANN T. Nanopesticide research: Current trends and future priorities[J]. Environment International, 2014, 63: 224-235. doi: 10.1016/j.envint.2013.11.015
    [7] LIU W, ZEB A, LIAN J, et al. Interactions of metal-based nanoparticles (MBNPs) and metal-oxide nanoparticles (MONPs) with crop plants: A critical review of research progress and prospects[J]. Environmental Reviews, 2020, 28(3): 294-310. doi: 10.1139/er-2019-0085
    [8] GOGOS A, KNAUER K, BUCHELI T D. Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities[J]. Journal of Agricultural and Food Chemistry, 2012, 60(39): 9781-9792. doi: 10.1021/jf302154y
    [9] KUMAR S, NEHRA M, DILBAGHI N, et al. Nanovehicles for plant modifications towards pest- and disease-resistance traits[J]. Trends in Plant Science, 2020, 25(2): 198-212. doi: 10.1016/j.tplants.2019.10.007
    [10] JEROBIN J, SURESHKUMAR R S, ANJALI C H, et al. Biodegradable polymer based encapsulation of neem oil nanoemulsion for controlled release of Aza-A[J]. Carbohydrate Polymers, 2012, 90(4): 1750-1756. doi: 10.1016/j.carbpol.2012.07.064
    [11] ADAK T, KUMAR J, SHAKIL N A, et al. Development of controlled release formulations of imidacloprid employing novel nano-ranged amphiphilic polymers[J]. Journal of Environmental Science and Health: Part B, 2012, 47(3): 217-225. doi: 10.1080/03601234.2012.634365
    [12] CHOUDHURY S R, PRADHAN S, GOSWAMI A. Preparation and characterisation of acephate nano-encapsulated complex[J]. Nanoscience Methods, 2012, 1(1): 9-15. doi: 10.1080/17458080.2010.533443
    [13] AKBULUT M, GINART P, GINDY M E, et al. Generic method of preparing multifunctional fluorescent nanoparticles using flash nanoprecipitation[J]. Advanced Functional Materials, 2009, 19(5): 718-725. doi: 10.1002/adfm.200801583
    [14] HINDE E, THAMMASIRAPHOP K, DUONG H T T, et al. Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release[J]. Nature Nanotechnology, 2017, 12(1): 81-89. doi: 10.1038/nnano.2016.160
    [15] BLANCO E, SHEN H, FERRARI M. Principles of nanoparticle design for overcoming biological barriers to drug delivery[J]. Nature Biotechnology, 2015, 33(9): 941-951. doi: 10.1038/nbt.3330
    [16] JOHNSON B K, PRUD'HOMME R K. Chemical processing and micromixing in confined impinging jets[J]. AIChE Journal, 2003, 49(9): 2264-2282. doi: 10.1002/aic.690490905
    [17] JOHNSON B K, PRUD'HOMME R K. Mechanism for rapid self-assembly of block copolymer nanoparticles.[J]. Physical Review Letters, 2003, 91(11): 118301-118302. doi: 10.1103/PhysRevLett.91.118301
    [18] GINDY M E, PRUD'HOMME R K. Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy[J]. Expert Opinion On Drug Delivery, 2009, 6(8): 865-878. doi: 10.1517/17425240902932908
    [19] FENG J, MARKWALTER C E, TIAN C, et al. Translational formulation of nanoparticle therapeutics from laboratory discovery to clinical scale[J]. Journal of Translational Medicine, 2019, 17(1): 200.
    [20] ZHU Z. Flash nanoprecipitation: Prediction and enhancement of particle stability via drug structure[J]. Molecular Pharmaceutics, 2014, 11(3): 776-786. doi: 10.1021/mp500025e
    [21] LIU Y, YANG G, BABY T, et al. Stable Polymer nanoparticles with exceptionally high drug loading by sequential nanoprecipitation[J]. Angewandte Chemie: International Edition, 2020, 59(12): 4720-4728. doi: 10.1002/anie.201913539
    [22] LIU Z, RAMEZANI M, FOX R O, et al. Flow characteristics in a scaled-up multi-inlet vortex nanoprecipitation reactor[J]. Industrial & Engineering Chemistry Research, 2015, 54(16): 4512-4525.
    [23] SAAD W S, PRUD'HOMME R K. Principles of nanoparticle formation by flash nanoprecipitation[J]. Nano Today, 2016, 11(2): 212-227. doi: 10.1016/j.nantod.2016.04.006
    [24] D'ADDIO S M, PRUD'HOMME R K. Controlling drug nanoparticle formation by rapid precipitation[J]. Advanced Drug Delivery Reviews, 2011, 63(6): 417-426. doi: 10.1016/j.addr.2011.04.005
    [25] HICKEY J W, SANTOS J L, WILLIFORD J, et al. Control of polymeric nanoparticle size to improve therapeutic delivery[J]. Journal of Controlled Release, 2015, 219: 536-547. doi: 10.1016/j.jconrel.2015.10.006
    [26] 刘靖康, 李猛, 王铭纬, 等. 基于瞬时纳米沉淀法的球形纳米粒子电荷及粒径调控[J]. 华东理工大学学报(自然科学版), 2020, 46(3): 334-340.
    [27] ZHU Z. Effects of amphiphilic diblock copolymer on drug nanoparticle formation and stability[J]. Biomaterials, 2013, 34(38): 10238-10248. doi: 10.1016/j.biomaterials.2013.09.015
    [28] LAVINO A D, DI PASQUALE N, CARBONE P, et al. A novel multiscale model for the simulation of polymer flash nano-precipitation[J]. Chemical Engineering Science, 2017, 171: 485-494. doi: 10.1016/j.ces.2017.04.047
    [29] CHENG J C, FOX R O. Kinetic modeling of nanoprecipitation using CFD coupled with a population balance[J]. Industrial & Engineering Chemistry Research, 2010, 49(21): 10651-10662.
    [30] HAO Y, SEO J, HU Y, et al. Flow physics and mixing quality in a confined impinging jet mixer[J]. AIP Advances, 2020, 10(4): 045105.
    [31] LIU Y, KATHAN K, SAAD W, et al. Ostwald ripening of β-carotene nanoparticles[J]. Physical Review Letters, 2007, 98(3): 36102. doi: 10.1103/PhysRevLett.98.036102
    [32] JOHNSON B K, PRUD'HOMME R K. Flash Nanoprecipitation of organic actives and block copolymers using a confined impinging jets mixer[J]. Australian Journal of Chemistry, 2003, 56(10): 1021-1024. doi: 10.1071/CH03115
    [33] YORK A W, ZABLOCKI K R, LEWIS D R, et al. Kinetically assembled nanoparticles of bioactive macromolecules exhibit enhanced stability and cell-targeted biological efficacy[J]. Advanced Materials, 2012, 24(6): 733-741. doi: 10.1002/adma.201103348
    [34] CHENG J C, OLSEN M G, FOX R O. A microscale multi-inlet vortex nanoprecipitation reactor: Turbulence measurement and simulation[J]. Applied Physics Letters, 2009, 94(20): 204104.
    [35] KALKOWSKI J, LIU C, LEON-PLATA P, et al. In situ measurements of polymer micellization kinetics with millisecond temporal resolution[J]. Macromolecules, 2019, 52(9): 3151-3157. doi: 10.1021/acs.macromol.8b02257
    [36] ZENG Z, DONG C, ZHAO P, et al. Scalable production of therapeutic protein nanoparticles using flash nanoprecipitation[J]. Advanced Healthcare Materials, 2019, 8(1801010).
    [37] VALENTE I, CELASCO E, MARCHISIO D L, et al. Nanoprecipitation in confined impinging jets mixers: Production, characterization and scale-up of pegylated nanospheres and nanocapsules for pharmaceutical use[J]. Chemical Engineering Science, 2012, 77: 217-227. doi: 10.1016/j.ces.2012.02.050
    [38] WANG M, YANG N, GUO Z, et al. Facile preparation of AIE-active fluorescent nanoparticles through flash nanoprecipitation[J]. Industrial & Engineering Chemistry Research, 2015, 54(17): 4683-4688.
    [39] 马俊, 李莉, 王铭纬, 等. 基于瞬时纳米沉淀法制备尺寸可控载药纳米粒子[J]. 华东理工大学学报(自然科学版), 2017, 43(5): 597-605.
    [40] LIU Y, CHENG C, LIU Y, et al. Mixing in a multi-inlet vortex mixer (MIVM) for flash nano-precipitation[J]. Chemical Engineering Science, 2008, 63(11): 2829-2842. doi: 10.1016/j.ces.2007.10.020
    [41] LIU Z, PASSALACQUA A, OLSEN M G, et al. Dynamic delayed detached eddy simulation of a multi-inlet vortex reactor[J]. AICHE Journal, 2016, 62(7): 2570-2578. doi: 10.1002/aic.15230
    [42] SHI Y, FOX R O, OLSEN M G. Micromixing visualization and quantification in a microscale multi-inlet vortex nanoprecipitation reactor using confocal-based reactive micro laser-induced fluorescence[J]. Biomicrofluidics, 2014, 8(4): 044102.
    [43] MARKWALTER C E, PAGELS R F, HEJAZI A N, et al. Polymeric nanocarrier formulations of biologics using inverse flash nanoprecipitation[J]. AAPS Journal, 2020, 22(2): 18.
    [44] WANG M, XU Y, LIU Y, et al. Morphology tuning of aggregation-induced emission probes by flash nanoprecipitation: Shape and size effects onin vivo imaging[J]. ACS Applied Materials & Interfaces, 2018, 10(30): 25186-25193.
    [45] WANG M, LIN S, WANG J, et al. Controlling morphology and release behavior of sorafenib-loaded nanocarriers prepared by flash nanoprecipitation[J]. Industrial & Engineering Chemistry Research, 2018, 57(35): 11911-11919.
    [46] NIKOUBASHMAN A, LEE V E, SOSA C, et al. Directed assembly of soft colloids through rapid solvent exchange[J]. ACS Nano, 2016, 10(1): 1425-1433. doi: 10.1021/acsnano.5b06890
    [47] LI N, NIKOUBASHMAN A, PANAGIOTOPOULOS A Z. Self-assembly of polymer blends and nanoparticles through rapid solvent exchange[J]. Langmuir, 2019, 35(10): 3780-3789. doi: 10.1021/acs.langmuir.8b04197
    [48] GRUNDY L S, LEE V E, LI N, et al. Rapid production of internally structured colloids by flash nanoprecipitation of block copolymer blends[J]. ACS Nano, 2018, 12(5): 4660-4668. doi: 10.1021/acsnano.8b01260
    [49] ZHANG C, PANSARE V J, PRUD'HOMME R K, et al. Flash nanoprecipitation of polystyrene nanoparticles[J]. Soft Matter, 2012, 8(1): 86-93. doi: 10.1039/C1SM06182H
    [50] LEE V E, SOSA C, LIU R, et al. Scalable platform for structured and hybrid soft nanocolloids by continuous precipitation in a confined environment[J]. Langmuir, 2017, 33(14): 3444-3449. doi: 10.1021/acs.langmuir.7b00249
    [51] DU F, BOBBALA S, YI S, et al. Sequential intracellular release of water-soluble cargos from shell-crosslinked polymersomes[J]. Journal of Controlled Release, 2018, 282: 90-100. doi: 10.1016/j.jconrel.2018.03.027
    [52] ALLEN S D, LIU Y, BOBBALA S, et al. Polymersomes scalably fabricated via flash nano-precipitation are non-toxic in non-human primates and associate with leukocytes in the spleen and kidney following intravenous administration[J]. Nano Research, 2018, 11(10SI): 5689-5703.
    [53] YILDIZ M E, PRUD'HOMME R K, ROBB I, et al. Formation and characterization of polymersomes made by a solvent injection method[J]. Polymers for Advanced Technologies, 2007, 18(6): 427-432. doi: 10.1002/pat.858
    [54] KOZUCH D J, RISTROPH K, PRUD'HOMME R K, et al. Insights into hydrophobic ion pairing from molecular simulation and experiment[J]. ACS Nano, 2020, 14(5): 6097-6106. doi: 10.1021/acsnano.0c01835
    [55] YUAN Y, HUANG Y. Ionically crosslinked polyelectrolyte nanoparticle formation mechanisms: The significance of mixing[J]. Soft Matter, 2019, 15(48): 9871-9880. doi: 10.1039/C9SM01441A
    [56] PINKERTON N M, BEHAR L, HADRI K, et al. Ionic flash nanoprecipitation (iFNP) for the facile, one-step synthesis of inorganic-organic hybrid nanoparticles in water[J]. Nanoscale, 2017, 9(4): 1403-1408. doi: 10.1039/C6NR09364G
    [57] ZHU Z, MARGULIS-GOSHEN K, MAGDASSI S, et al. Polyelectrolyte stabilized drug nanoparticles via flash nanoprecipitation: A model study with beta-carotene[J]. Journal of Pharmaceutical Sciences, 2010, 99(10): 4295-4306. doi: 10.1002/jps.22090
    [58] HE Z, SANTOS J L, TIAN H, et al. Scalable fabrication of size-controlled chitosan nanoparticles for oral delivery of insulin[J]. Biomaterials, 2017, 130: 28-41. doi: 10.1016/j.biomaterials.2017.03.028
    [59] BIAN W, WANG M, AHSAN B, et al. Gefitinib-loaded nanoparticles with folic acid-modified dextran surface prepared by flash nanoprecipitation[J]. Chemistry Letters, 2018, 47(11): 1405-1408. doi: 10.1246/cl.180686
    [60] GU L, FAIG A, ABDELHAMID D, et al. Sugar-based amphiphilic polymers for biomedical applications: From nanocarriers to therapeutics[J]. Accounts of Chemical Research, 2014, 47(10): 2867-2877. doi: 10.1021/ar4003009
    [61] CHIU S, WANG S, CHOU H, et al. Versatile synthesis of thiol- and amine-bifunctionalized silica nanoparticles based on the ouzo effect[J]. Langmuir, 2014, 30(26): 7676-7686. doi: 10.1021/la501571u
    [62] ZHANG S, CHAN K H, PRUD'HOMME R K, et al. Synthesis and evaluation of clickable block copolymers for targeted nanoparticle drug delivery[J]. Molecular Pharmaceutics, 2012, 9(8): 2228-2236. doi: 10.1021/mp3000748
    [63] LIU Y, TONG Z, PRUD'HOMME R K. Stabilized polymeric nanoparticles for controlled and efficient release of bifenthrin[J]. Pest Management Science, 2008, 64(8): 808-812. doi: 10.1002/ps.1566
    [64] FU Z, CHEN K, LI L, et al. Spherical and spindle-like abamectin-loaded nanoparticles by flash nanoprecipitation for southern root-knot nematode control: Preparation and characterization[J]. Nanomaterials, 2018, 8(6): 449.
    [65] CHEN K, WANG Y, CUI H, et al. Difunctional fluorescence nanoparticles for accurate tracing of nanopesticide fate and crop protection prepared by flash nanoprecipitation[J]. Journal of Agricultural and Food Chemistry, 2020, 68(3): 735-741. doi: 10.1021/acs.jafc.9b06744
    [66] CHEN K, FU Z, WANG M, et al. Preparation and characterization of size-controlled nanoparticles for high-loading lambda-cyhalothrin delivery through flash nanoprecipitation[J]. Journal of Agricultural and Food Chemistry, 2018, 66(31): 8246-8252. doi: 10.1021/acs.jafc.8b02851
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  628
  • HTML全文浏览量:  373
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-29
  • 网络出版日期:  2021-01-07

目录

    /

    返回文章
    返回