高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

农业化工的新进展:纳米农用化学品

马恩广 陈凯 付智楠 孙亮 贾鑫 刘志勇 郭旭虹

马恩广, 陈凯, 付智楠, 孙亮, 贾鑫, 刘志勇, 郭旭虹. 农业化工的新进展:纳米农用化学品[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20200929001
引用本文: 马恩广, 陈凯, 付智楠, 孙亮, 贾鑫, 刘志勇, 郭旭虹. 农业化工的新进展:纳米农用化学品[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20200929001
MA Enguang, CHEN Kai, FU Zhinan, SUN Liang, JIA Xin, LIU Zhiyong, GUO Xuhong. Development of Agrochemical Engineering: Nano-Agrochemicals[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20200929001
Citation: MA Enguang, CHEN Kai, FU Zhinan, SUN Liang, JIA Xin, LIU Zhiyong, GUO Xuhong. Development of Agrochemical Engineering: Nano-Agrochemicals[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20200929001

农业化工的新进展:纳米农用化学品

doi: 10.14135/j.cnki.1006-3080.20200929001
基金项目: 国家自然科学基金(51773061)
详细信息
    作者简介:

    马恩广(1992—),男,山东德州人,博士生,主要从事农业化工研究。E-mail:maenguang@163.com

    通讯作者:

    陈 凯,E-mail:chenkai@shzu.edu.cn

    郭旭虹,E-mail:guoxuhong@ecust.edu.cn

  • 中图分类号: S-1

Development of Agrochemical Engineering: Nano-Agrochemicals

  • 摘要: 伴随着化学工程学科基础理论的发展与应用领域的拓宽,结合现代农业的迫切需求和发展趋势,化学工程与农业学科互相渗透、交叉孵化出农业化工新领域。本文尝试归纳农业化工的内涵,并综述了农业化工领域纳米农用化学品的制备和应用,重点介绍以瞬时纳米沉淀技术为代表的纳米农药制备,环境响应型控释农药和纳米农药的迁移规律,以及利用控释肥料和农药促进水肥药一体化新技术的发展。最后对农业化工的未来发展进行了展望。

     

  • 图  1  FNP技术制备纳米粒子示意图

    Figure  1.  Schematic illustration of the fabrication of nanoparticles using FNP technique

    图  2  FNP技术制备PEG-PDLLA/LC纳米粒子和生物测定示意图[23]

    Figure  2.  Schematic illustration of the preparation of PEG-PDLLA/LC nanoparticles using FNP technique and bioassay[23]

    图  3  利用连续FNP技术制备负载阿维菌素的介孔二氧化硅纳米颗粒的原理图[24]

    Figure  3.  Schematic illustration of the preparation of abamectin-loaded mesoporous sillica nanoparticles using sequential FNP technique[24]

    图  4  FNP技术制备阿维菌素负载纳米颗粒的示意图[25]

    Figure  4.  Schematic illustration of the preparation of abamectin-loaded nanoparticles using FNP technique[25]

    图  5  高压均质技术与乳液-溶剂蒸发法相结合制备吡唑醚菌酯纳米球[34]

    Figure  5.  Preparation process of synthetic pyraclostrobin nanospheres by combining HPH technology and emulsion-solvent evaporation methods[34]

    图  6  高压均质技术-熔融乳化法制备高效氯氟氰菊酯纳米悬浮剂示意图[35]

    Figure  6.  Schematic illustration of the preparation of lambda-cyhalothrin nanosuspension using HPH-melt emulsification[35]

    图  7  利用FNP技术制备双功能荧光纳米颗粒并用于精确跟踪纳米农药和作物保护示意图[55]

    Figure  7.  Schematic illustration of the preparation of difunctional fluorescence nanoparticles for accurate tracing of nanopesticide fate and crop protection using FNP technique[55]

  • [1] 潘兴鲁, 董丰收, 刘新刚, 等. 中国农药70年发展与应用回顾[J]. 现代农药, 2020, 19(1): 1-5, 23.
    [2] 杨慧, 刘立晶, 刘忠军, 等. 我国农田化肥施用现状分析及建议[J]. 农机化研究, 2014, 36(9): 260-264. doi: 10.3969/j.issn.1003-188X.2014.09.059
    [3] KUSUMASTUTI Y, ISTIANI A, ROCHMADI C W P. Chitosan-based polyion multilayer coating on NPK fertilizer as controlled released fertilizer[J]. Advances in Materials Science and Engineering, 2019, 2019(11): 1-8.
    [4] NURUZZAMAN M, RAHMAN M M, LIU Y, et al. Nanoencapsulation, nano-guard for pesticides: A new window for safe application[J]. Journal of Agricultural and Food Chemistry, 2016, 64(7): 1447-1483. doi: 10.1021/acs.jafc.5b05214
    [5] 金涌, 程易, 颜彬航. 化学反应工程的前世、今生与未来[J]. 化工学报, 2013, 64(1): 34-43. doi: 10.3969/j.issn.0438-1157.2013.01.006
    [6] 施瑢, 王玉军, 骆广生. 膜分散微反应器制备纳米ZnO颗粒[J]. 过程工程学报, 2010, 10(S1): 1-6.
    [7] LIU L, XIANG N, NI Z. Droplet-based microreactor for the production of micro/nano-materials[J]. Electrophoresis, 2020, 41(10/11): 833-851.
    [8] 潘振中, 崔博, 崔海信, 等. 农药纳米混悬剂及其制备方法探析[J]. 农药学学报, 2014, 16(6): 635-643. doi: 10.3969/j.issn.1008-7303.2014.06.02
    [9] KIM S, WANG H, YAN L, et al. Continuous preparation of itraconazole nanoparticles using droplet-based microreactor[J]. Chemical Engineering Journal, 2020, 393:124721. doi: 10.1016/j.cej.2020.124721.
    [10] USON L, ARRUEBO M, SEBASTIAN V, et al. Single phase microreactor for the continuous, high-temperature synthesis of <4 nm superparamagnetic iron oxide nanoparticles[J]. Chemical Engineering Journal, 2018, 340: 66-72. doi: 10.1016/j.cej.2017.12.024
    [11] 骆广生, 王凯, 王佩坚, 等. 微反应器内聚合物合成研究进展[J]. 化工学报, 2014, 65(7): 2563-2573. doi: 10.3969/j.issn.0438-1157.2014.07.018
    [12] LIU Y, YANG G, ZOU D, et al. Formulation of nanoparticles using mixing-induced nanoprecipitation for drug delivery[J]. Industrial & Engineering Chemistry Research, 2019, 59(9): 4134-4149.
    [13] JOHNSON B K, PRUD'HOMME R K. Chemical processing and micromixing in confined impinging jets[J]. AIChE Journal, 2003, 49(9): 2264-2282. doi: 10.1002/aic.690490905
    [14] JOHNSON B K, PRUD'HOMME R K. Flash nanoprecipitation of organic actives and block copolymers using a confined impinging jets mixer[J]. Australian Journal of Chemistry, 2003, 56(10): 1021-1024. doi: 10.1071/CH03115
    [15] LI M, XU Y, SUN J, et al. Fabrication of charge-conversion nanoparticles for cancer imaging by flash nanoprecipitation[J]. ACS Applied Materials & Interfaces, 2018, 10(13): 10752-10760.
    [16] WANG M, LIN S, WANG J, et al. Controlling morphology and release behavior of sorafenib-loaded nanocarriers prepared by flash nanoprecipitation[J]. Industrial & Engineering Chemistry Research, 2018, 57(35): 11911-11919.
    [17] WANG M, XU Y, WANG J, et al. Biocompatible nanoparticle based on dextran-b-poly(L-lactide) block copolymer formed by flash nanoprecipitation[J]. Chemistry Letters, 2015, 44(12): 1688-1690. doi: 10.1246/cl.150800
    [18] WANG M, YANG N, GUO Z, et al. Facile preparation of AIE-active fluorescent nanoparticles through flash nanoprecipitation[J]. Industrial & Engineering Chemistry Research, 2015, 54(17): 4683-4688.
    [19] WANG M, XU Y, LIU Y, et al. Morphology tuning of aggregation-induced emission probes by flash nanoprecipitation: Shape and size effects on in vivo imaging[J]. ACS Applied Materials & Interfaces, 2018, 10(30): 25186-25193.
    [20] TAN Z, SHI Y, WEI T, et al. Fast and facile preparation of S nanoparticles by flash nanoprecipitation for lithium–sulfur batteries[J]. New Journal of Chemistry, 2020, 44(2): 466-471.
    [21] ZHU Z, XU P, FAN G, et al. Fast synthesis and separation of nanoparticles via in-situ reactive flash nanoprecipitation and pH tuning[J]. Chemical Engineering Journal, 2019, 356: 877-885. doi: 10.1016/j.cej.2018.09.103
    [22] D'ADDIO S M, PRUD'HOMME R K. Controlling drug nanoparticle formation by rapid precipitation[J]. Advanced Drug Delivery Reviews, 2011, 63(6): 417-426. doi: 10.1016/j.addr.2011.04.005
    [23] CHEN K, FU Z, WANG M, et al. Preparation and characterization of size-controlled nanoparticles for high-loading lambda-cyhalothrin delivery through flash nanoprecipitation[J]. Journal of Agricultural and Food Chemistry, 2018, 66(31): 8246-8252. doi: 10.1021/acs.jafc.8b02851
    [24] FU Z, LI L, WANG Y, et al. Direct preparation of drug-loaded mesoporous silica nanoparticles by sequential flash nanoprecipitation[J]. Chemical Engineering Journal, 2020, 382: 122905. doi: 10.1016/j.cej.2019.122905.
    [25] FU Z, CHEN K, LI L, et al. Spherical and spindle-like abamectin-loaded nanoparticles by flash nanoprecipitation for southern root-knot nematode control: Preparation and characterization[J]. Nanomaterials, 2018, 8(6): 449. doi: 10.3390/nano8060449.
    [26] 马俊, 李莉, 王铭纬, 等. 基于瞬时纳米沉淀法制备尺寸可控载药纳米粒子[J]. 华东理工大学学报(自然科学版), 2017, 43(5): 597-605.
    [27] FU Z, LI L, WANG M, et al. Size control of drug nanoparticles stabilized by mPEG-b-PCL during flash nanoprecipitation[J]. Colloid and Polymer Science, 2018, 296(5): 935-940. doi: 10.1007/s00396-018-4311-1
    [28] ZHU Z. Effects of amphiphilic diblock copolymer on drug nanoparticle formation and stability[J]. Biomaterials, 2013, 34(38): 10238-10248. doi: 10.1016/j.biomaterials.2013.09.015
    [29] 刘靖康, 李猛, 王铭纬, 等. 基于瞬时纳米沉淀法的球形纳米粒子电荷及粒径调控[J]. 华东理工大学学报(自然科学版), 2020, 46(3): 334-340.
    [30] CUI B, FENG L, WANG C, et al. Stability and biological activity evaluation of chlorantraniliprole solid nanodispersions prepared by high pressure homogenization[J]. Plos One, 2016, 11(8): e0160877. doi: 10.1371/journal.pone.0160877
    [31] WANG Y, MA Y, ZHENG Y, et al. In vitro and in vivo anticancer activity of a novel puerarin nanosuspension against colon cancer, with high efficacy and low toxicity[J]. International Journal of Pharmaceutics, 2013, 441(1/2): 728-735.
    [32] SHELAR D B, PAWAR S K, VAVIA P R. Fabrication of isradipine nanosuspension by anti-solvent microprecipitation-high-pressure homogenization method for enhancing dissolution rate and oral bioavailability[J]. Drug Delivery Translational Research, 2013, 3(5): 384-391. doi: 10.1007/s13346-012-0081-3
    [33] MARTINEZ-SANCHEZ A, TARAZONA-DIAZ M P, GARCIA-GONZALEZ A, et al. Effect of high-pressure homogenization on different matrices of food supplements[J]. Food Science and Technology International, 2016, 22(8): 708-719. doi: 10.1177/1082013216642887
    [34] WANG A, CUI J, WANG Y, et al. Preparation and characterization of a novel controlled-release nano-delivery system loaded with pyraclostrobin via high-pressure homogenization[J]. Pest Management Science, 2020, 76(8): 2829-2837. doi: 10.1002/ps.5833
    [35] PAN Z, CUI B, ZENG Z, et al. Lambda-cyhalothrin nanosuspension prepared by the melt emulsification-high pressure homogenization method[J]. Journal of Nanomaterials, 2015, 16: 123496. doi: 10.1155/2015/123496.
    [36] LIANG Y, GUO M, FAN C, et al. Development of novel urease-responsive pendimethalin microcapsules using silica-IPTS-PEI as controlled release carrier materials[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 4802-4810.
    [37] ATTA S, PAUL A, BANERJEE R, et al. Photoresponsive polymers based on a coumarin moiety for the controlled release of pesticide 2, 4-D[J]. RSC Advances, 2015, 5(121): 99968-99975. doi: 10.1039/C5RA18944F
    [38] GAO Z, YUAN P, WANG D, et al. Photo-controlled release of fipronil from a coumarin triggered precursor[J]. Bioorganic & Medicinal Chemistry Letters, 2017, 27(11): 2528-2535.
    [39] XU Z, GAO Z, SHAO X. Light-triggered release of insecticidally active spirotetramat-enol[J]. Chinese Chemical Letters, 2018, 29(11): 1648-1650. doi: 10.1016/j.cclet.2018.01.025
    [40] CHEN C, ZHANG G, DAI Z, et al. Fabrication of light-responsively controlled-release herbicide using a nanocomposite[J]. Chemical Engineering Journal, 2018, 349: 101-110. doi: 10.1016/j.cej.2018.05.079
    [41] DING K, SHI L, ZHANG L, et al. Synthesis of photoresponsive polymeric propesticide micelles based on PEG for the controlled release of a herbicide[J]. Polymer Chemistry, 2016, 7(4): 899-904. doi: 10.1039/C5PY01690H
    [42] CAMARA M C, CAMPOS E V R, MONTEIRO R A, et al. Development of stimuli-responsive nano-based pesticides: Emerging opportunities for agriculture[J]. Journal of Nanobiotechnology, 2019, 17: 100. doi: 10.1186/s12951-019-0533-8.
    [43] HUANG B, CHEN F, SHEN Y, et al. Advances in targeted pesticides with environmentally responsive controlled release by nanotechnology[J]. Nanomaterials, 2018, 8(2): 102. doi: 10.3390/nano8020102
    [44] XU X, BAI B, WANG H, et al. A near-infrared and temperature-responsive pesticide release platform through core-shell polydopamine@PNIPAm nanocomposites[J]. ACS Applied Materials & Interfaces, 2017, 9(7): 6424-6432.
    [45] GAO Y, XIAO Y, MAO K, et al. Thermoresponsive polymer-encapsulated hollow mesoporous silica nanoparticles and their application in insecticide delivery[J]. Chemical Engineering Journal, 2020, 383: 123169. doi: 10.1016/j.cej.2019.123169.
    [46] SHEN Y, WANG Y, ZHAO X, et al. Preparation and physicochemical characteristics of thermo-responsive emamectin benzoate microcapsules[J]. Polymers, 2017, 9(9): 418. doi: 10.3390/polym9090418.
    [47] ZHANG Y, CHEN W, JING M, et al. Self-assembled mixed micelle loaded with natural pyrethrins as an intelligent nano-insecticide with a novel temperature-responsive release mode[J]. Chemical Engineering Journal, 2019, 361: 1381-1391. doi: 10.1016/j.cej.2018.10.132
    [48] 王宁, 齐麟, 王娅, 等. 温度响应型吡唑醚菌酯微囊的制备与性能表征[J]. 农药学学报, 2017, 19(3): 381-387.
    [49] KOCAK G, TUNCER C, BÜTÜN V. pH-responsive polymers[J]. Polymer Chemistry, 2017, 8(1): 144-176. doi: 10.1039/C6PY01872F
    [50] ZHAO M, ZHOU H, CHEN L, et al. Carboxymethyl chitosan grafted trisiloxane surfactant nanoparticles with pH sensitivity for sustained release of pesticide[J]. Carbohydrate Polymers, 2020, 243:116433. doi: 10.1016/j.carbpol.2020.116433.
    [51] LIU G, LIN G, TAN M, et al. Hydrazone-linked soybean protein isolate-carboxymethyl cellulose conjugates for pH-responsive controlled release of pesticides[J]. Polymer Journal, 2019, 51(11): 1211-1222. doi: 10.1038/s41428-019-0235-y
    [52] XIANG Y, LU X, YUE J, et al. Stimuli-responsive hydrogel as carrier for controlling the release and leaching behavior of hydrophilic pesticide[J]. Science of the Total Environment, 2020, 722: 137811. doi: 10.1039/9781782620105-00149.
    [53] XIANG Y, ZHANG G, CHEN C, et al. Fabrication of a pH-responsively controlled-release pesticide using an attapulgite-based hydrogel[J]. ACS Sustainable Chemistry & Engineering, 2017, 6(1): 1192-1201.
    [54] TONG M M, GAO W J, JIAO W T, et al. Uptake, translocation, metabolism, and distribution of glyphosate in nontarget tea plant (Camellia sinensis L.)[J]. Journal of Agricultural and Food Chemistry, 2017, 65(35): 7638-7646. doi: 10.1021/acs.jafc.7b02474
    [55] CHEN K, WANG Y, CUI H, et al. Difunctional fluorescence nanoparticles for accurate tracing of nanopesticide fate and crop protection prepared by flash nanoprecipitation[J]. Journal of Agricultural and Food Chemistry, 2020, 68(3): 735-741. doi: 10.1021/acs.jafc.9b06744
    [56] CAO L, ZHANG H, ZHOU Z, et al. Fluorophore-free luminescent double-shelled hollow mesoporous silica nanoparticles as pesticide delivery vehicles[J]. Nanoscale, 2018, 10(43): 20354-20365. doi: 10.1039/C8NR04626C
    [57] ZHAO X, CUI H, WANG Y, et al. Development strategies and prospects of nano-based smart pesticide formulation[J]. Journal of Agricultural and Food Chemistry, 2018, 66(26): 6504-6512. doi: 10.1021/acs.jafc.7b02004
    [58] ZHI H, YU M, YAO J, et al. A facile approach to increasing the foliage retention of pesticides based on coating with a tannic acid/Fe3+ complex[J]. Coatings, 2020, 10(4): 359. doi: 10.3390/coatings10040359.
    [59] HAO L, LIN G, LIAN J, et al. Carboxymethyl cellulose capsulated zein as pesticide nano-delivery system for improving adhesion and anti-UV properties[J]. Carbohydrate Polymers, 2020, 231: 115725. doi: 10.1016/j.carbpol.2019.115725.
    [60] YU M, SUN C, XUE Y, et al. Tannic acid-based nanopesticides coating with highly improved foliage adhesion to enhance foliar retention[J]. RSC Advances, 2019, 9(46): 27096-27104. doi: 10.1039/C9RA05843E
    [61] JIA X, MA Z Y, ZHANG G X, et al. Polydopamine film coated controlled-release multielement compound fertilizer based on mussel-inspired chemistry[J]. Journal of Agricultural and Food Chemistry, 2013, 61(12): 2919-2924. doi: 10.1021/jf3053059
    [62] MA Z, JIA X, HU J, et al. Mussel-inspired thermosensitive polydopamine-graft-poly(N-isopropylacrylamide) coating for controlled-release fertilizer[J]. Journal of Agricultural and Food Chemistry, 2013, 61(50): 12232-12237. doi: 10.1021/jf4038826
    [63] MA Z Y, JIA X, ZHANG G X, et al. pH-responsive controlled-release fertilizer with water retention via atom transfer radical polymerization of acrylic acid on mussel-inspired initiator[J]. Journal of Agricultural and Food Chemistry, 2013, 61(23): 5474-5482. doi: 10.1021/jf401102a
    [64] KANG J, BAI G, MA S, et al. On-site surface coordination complexation via mechanochemistry for versatile metal-phenolic networks films[J]. Advanced Materials Interfaces, 2019, 6(5): 1801789. doi: 10.1002/admi.201801789.
    [65] 王云爱, 于海欧, 徐菊敏. 现代农业“水肥药一体化”技术[J]. 中国农业信息, 2013(1): 89.
  • 加载中
图(7)
计量
  • 文章访问数:  762
  • HTML全文浏览量:  378
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-29
  • 网络出版日期:  2020-12-16

目录

    /

    返回文章
    返回