高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

有源噪声控制中基于神经网络的次级通道辨识优化

冷仓田 王德祯 周邵萍

冷仓田, 王德祯, 周邵萍. 有源噪声控制中基于神经网络的次级通道辨识优化[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20200928001
引用本文: 冷仓田, 王德祯, 周邵萍. 有源噪声控制中基于神经网络的次级通道辨识优化[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20200928001
LENG Cangtian, WANG Dezhen, ZHOU Shaoping. Optimization of Secondary Path Identification in Active Noise Control Based on Neural Network[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20200928001
Citation: LENG Cangtian, WANG Dezhen, ZHOU Shaoping. Optimization of Secondary Path Identification in Active Noise Control Based on Neural Network[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20200928001

有源噪声控制中基于神经网络的次级通道辨识优化

doi: 10.14135/j.cnki.1006-3080.20200928001
详细信息
    作者简介:

    冷仓田(1996-),男,江西新余人,硕士生,主要研究方向:有源噪声控制。E-mail:lengct1996@163.com

    通讯作者:

    周邵萍,E-mail:shpzhou@ecust.edu.cn

  • 中图分类号: TB535

Optimization of Secondary Path Identification in Active Noise Control Based on Neural Network

  • 摘要: 针对有源噪声控制中非线性因素影响建模精度和控制效果的问题,采用神经网络代替传统模型,推导对应的控制算法。用训练结果验证了神经网络对次级通道辨识模型精度的提高。以管道为实验对象,搭建有源噪声控制实验平台,进行噪声控制实验,将传统次级通道模型与优化次级通道模型的实验结果进行对比。结论表明:在低频条件下,针对单一频率和两种频率混合的噪声源,相比传统模型和算法,神经网络优化模型和算法取得了较好的效果。

     

  • 图  1  有源噪声控制基本结构

    Figure  1.  Basic structure of active noise control

    图  2  有源噪声控制系统示意图

    Figure  2.  Diagram of active noise control system

    图  3  附加白噪声法的次级通道辨识

    Figure  3.  Diagram of secondary path identification based on additive white noise

    图  4  BP神经网络结构图

    Figure  4.  Structure of BP neural network

    图  5  神经网络次级通道辨识结构图

    Figure  5.  Structure of secondary path identification based on neural network

    图  6  优化后的ANC算法结构图

    Figure  6.  Optimized structure of ANC

    图  7  硬件系统结构

    Figure  7.  Structure of hardware system

    图  8  实验管道布置

    Figure  8.  Layout of duct

    图  9  噪声控制实验平台

    Figure  9.  Platform for noise control experiments

    图  10  实验流程图

    Figure  10.  Diagram of experimental flow

    图  11  次级通道辨识结果比较

    Figure  11.  Comparison of secondary path identification results

    图  12  500 Hz噪声源的模拟降噪效果

    Figure  12.  Simulated result with 500 Hz noise

    图  13  500 Hz噪声源的模拟滤波器系数

    Figure  13.  Simulated coefficients of the filter with 500 Hz noise

    图  14  500 Hz噪声的实验结果频谱图

    Figure  14.  Spectra of results with 500 Hz noise

    图  15  500 Hz噪声的 FxLMS控制实验功率谱图

    Figure  15.  PSD of FxLMS result with 500 Hz noise

    图  16  500 Hz噪声的优化控制实验功率谱图

    Figure  16.  PSD of optimization result with 500 Hz noise

    图  17  500+800 Hz噪声源的实验结果频谱图

    Figure  17.  Spectra of results with 500+800 Hz noise

    图  18  500+800 Hz噪声的 FxLMS控制实验功率谱图

    Figure  18.  PSD of FxLMS result with 500+800 Hz noise

    图  19  500+800 Hz噪声的优化控制实验功率谱图

    Figure  19.  PSD of optimization result with 500+800 Hz noise

  • [1] KUO S M, MORGAN D R. Active noise control: A tutorial review[J]. Proceedings of the IEEE, 1999, 87(6): 943-973. doi: 10.1109/5.763310
    [2] 陈克安. 有源噪声控制[M]. 北京: 国防工业出版社, 2003.
    [3] KAJIKAWA Y, GAN W S, KUO S M. Recent advances on active noise control: open issues and innovative applications[J]. Apsipa Transactions on Signal & Information Processing, 2012, 1: e3.
    [4] LEUG P. Process of silencing sound oscillations: US, US2043416[P]. 1936.
    [5] GEORGE N V, PANDA G. Advances in active noise control: A survey, with emphasis on recent nonlinear techniques[J]. Signal Processing, 2013, 93(2): 363-377. doi: 10.1016/j.sigpro.2012.08.013
    [6] 关碧华, 周雅莉, 尹建民, 等. 噪声有源控制的模糊神经网络方法[J]. 北京机械工业学院学报, 2002(3): 11-14. doi: 10.3969/j.issn.1674-6864.2002.03.003
    [7] ZHANG X, REN X, NA J, et al. Adaptive nonlinear neuro-controller with an integrated evaluation algorithm for nonlinear active noise systems[J]. Journal of Sound & Vibration, 2010, 329(24): 5005-5016.
    [8] GEORGE N V, PANDA G. A particle-swarm-optimization-based decentralized nonlinear active noise control system[J]. IEEE Transactions on Instrumentation & Measurement, 2012, 61(12): 3378-3386.
    [9] DAS D P, MOREAU D J, CAZZOLATO B S. Adjoint nonlinear active noise control algorithm for virtual microphone[J]. Mechanical Systems & Signal Processing, 2012, 27(2): 743-754.
    [10] ZHAO H, ZENG X, ZHANG X, et al. Adaptive extended pipelined second-order volterra filter for nonlinear active noise controller[J]. IEEE Transactions on Audio Speech & Language Processing, 2012, 20(4): 1394-1399.
    [11] LU L, ZHAO H. Adaptive volterra filter with continuous lp-norm using a logarithmic cost for nonlinear active noise control[J]. Journal of Sound & Vibration, 2016, 364: 14-29.
    [12] MORGAN D. An analysis of multiple correlation cancellation loops with a filter in the auxiliary path[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 2003, 28(4): 454-467.
    [13] BURGESS J C. Active adaptive sound control in a duct: A computer simulation[J]. The Journal of the Acoustical Society of America, 1998, 70(3): 715-726.
    [14] WIDROW B, GLOVER J R, MCCOOL J M, et al. Adaptive noise cancelling: principles and applications[J]. Proceedings of the IEEE, 1976, 63(12): 1692-1716.
    [15] ERIKSSON L J, ALLIE M C. Use of random noise for on-line transducer modeling in an adaptive active attenuation system[J]. The Journal of the Acoustical Society of America, 1989, 85(2): 797-802. doi: 10.1121/1.397552
    [16] HAGAN M T, DEMUTH H B, BEALE M H. Neural network design[M]. 北京: 机械工业出版社, 2002.
    [17] 韩力群. 人工神经网络理论、设计及应用[M]. 北京: 化学工业出版社, 2002.
    [18] 陈克安, 马远良. 自适应有源消声与滤波—XLMS算法及实现[J]. 应用声学, 1993(4): 27-33. doi: 10.11684/j.issn.1000-310X.1993.04.006
  • 加载中
图(19)
计量
  • 文章访问数:  316
  • HTML全文浏览量:  227
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-28
  • 网络出版日期:  2021-01-16

目录

    /

    返回文章
    返回