高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

新型纳米球形聚电解质刷膜阻垢剂用于废水处理初探

温杨斌 何国锋 王勤 钱万俊 郭旭虹 李莉

温杨斌, 何国锋, 王勤, 钱万俊, 郭旭虹, 李莉. 新型纳米球形聚电解质刷膜阻垢剂用于废水处理初探[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20200927001
引用本文: 温杨斌, 何国锋, 王勤, 钱万俊, 郭旭虹, 李莉. 新型纳米球形聚电解质刷膜阻垢剂用于废水处理初探[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20200927001
WEN Yangbin, HE Guofeng, WANG Qin, QIAN Wanjun, GUO Xuhong, LI Li. Exploration on the Application of Nano-Sized Spherical Polyelectrolyte Brush Membrane Antiscalant in Wastewater Treatment[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20200927001
Citation: WEN Yangbin, HE Guofeng, WANG Qin, QIAN Wanjun, GUO Xuhong, LI Li. Exploration on the Application of Nano-Sized Spherical Polyelectrolyte Brush Membrane Antiscalant in Wastewater Treatment[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20200927001

新型纳米球形聚电解质刷膜阻垢剂用于废水处理初探

doi: 10.14135/j.cnki.1006-3080.20200927001
基金项目: 国家自然科学基金国际合作与交流项目(51761135128)
详细信息
    作者简介:

    温杨斌(1995—),男,河南安阳人,硕士生,主要研究方向:纳米球形聚电解质刷膜阻垢剂。E-mail:wyb041534@163.com

    通讯作者:

    李 莉,E-mail:lili76131@ecust.edu.cn

  • 中图分类号: S131.3

Exploration on the Application of Nano-Sized Spherical Polyelectrolyte Brush Membrane Antiscalant in Wastewater Treatment

  • 摘要: 采用反渗透膜处理法处理废水过程中膜表面极易结垢,大大缩短了反渗透膜的使用寿命,降低了废水处理效率。为了延长反渗透膜的使用寿命,往往要加入相应的膜阻垢剂,膜阻垢剂的好坏直接影响着废水处理的效果及效率。纳米球形聚电解质刷是一类具有核壳结构的高分子组装体,在静电作用和道南效应影响下纳米球形聚电解质刷具有选择性吸附反离子及抑制无机盐结晶的特性,可以作为膜阻垢剂应用于废水处理。本文采用光乳液聚合法合成了阴离子型纳米球形聚电解质刷,并发现它是一种性能优异的膜阻垢剂,阻垢性能优于行业中最好的进口阻垢剂ASD-200及MDC-220。通过动态评估实验研究了纳米球形聚电解质刷对CaCO3、CaSO4、Al3+离子的阻垢性能以及阻垢剂浓度对阻垢效果的影响,为其在工业废水处理中的实际应用提供了重要的参考依据。

     

  • 图  1  动态阻垢性能评价装置:(a)动态阻垢性能评价装置示意图(b)动态阻垢性能评价装置实物图

    Figure  1.  Evaluation equipment of reverse osmosis membrane antiscalant

    1-Raw water tank; 2-Raw water pump; 3-PP Cotton filter; 4-Activated carbon filter; 5-Ultrafilter; 6-Reverse osmosis membrane

    图  2  纳米球形聚电解质刷粒径大小及分布

    Figure  2.  Size and distribution of nano-sized spherical polyelectrolyte brushes(SPB)

    图  3  纳米球形聚电解质刷的TEM图像:(a)PS核的TEM图;(b)SPB的TEM图

    Figure  3.  TEM images of SPB: (a) TEM image of PS core; (b) TEM image of SPB

    图  4  不同阻垢剂样品低硬水质下产水流量随时间的变化

    Figure  4.  Changes in the flow rate of high-hardness and water with time for various membrane antiscalants

    图  5  不同阻垢剂样品高硬水质下产水流量随时间的变化

    Figure  5.  Changes in the flow rate of low-hardness and high-alkali water with time for various membrane antiscalants

    图  6  膜阻垢剂质量浓度对阻垢性能的影响

    Figure  6.  Influence of mass concentration on scale inhibition performance

    图  7  不同阻垢剂样品阻硫酸钙垢实验产水流量随时间的变化

    Figure  7.  Changes in water flow rate with time in the experiment of inhibiting calcium sulfate scale for various membrane antiscalants

    图  8  不同阻垢剂样品对Al3+阻垢性能对比

    Figure  8.  Al3+ scale inhibition performance for various membrane antiscalants

  • [1] YANG Q, ZHANG L, LI Y, et al. Studies on the application of nanofiltration membranes to the treatment of pesticide wastewater[J]. Industrial Water Treatment, 2009, 29(3): 29-32.
    [2] ZHANG Q, ZHU J, LIU K. Paraquat wastewater treatment by the membrane-based nanofiltration and reverse osmosis processes[J]. Membrane Science and Technology, 2014, 34(4): 94-98.
    [3] SEHN S, CHEN Y, XIA M, et al. Study on the treatment of highly-concentrated organic pesticide wastewater using biomimic membrane bio-reactor[J]. Industrial Water Treatment, 2003, 23(3): 40-43.
    [4] LI Y, ZHOU B, SHI Y, et al. Survey of researches on reveres osmosis scale inhibitor[J]. Industrial Water Treatment, 2004, 24(3): 17-21.
    [5] WANG E. Analysis of causes for fouling reverse osmosis membranes and countermeasure[J]. Technology of Water Treatment, 2004, 30(4): 244-246.
    [6] FU L J, ZHAO Y Z, GE H H. Survey of Researches on Reverse Osmosis Scale Inhibitor[J]. Journal of Shanghai University of Electric Power, 2012, 28(3): 242-246.
    [7] 张兰. 新型抗生物污染反渗透膜阻垢剂的研制及性能测定[D]. 上海: 同济大学, 2009.
    [8] YU R, HE L G, MA Z X. Synthesis and properties of environment-friendly non phosphorusreverse osmosis membrane scale inhibitor[J]. Applied Chemical Industry, 2017, 46(2): 328-331.
    [9] GUO X, WEISS A, BALLAUFF M. Synthesis of spherical polyelectrolyte brushes by photo emulsion polymerization[J]. Macromolecules, 1999, 32(19): 6043-6046. doi: 10.1021/ma990609o
    [10] CHEN K, ZHU Y, ZHANG Y, et al. Synthesis of magnetic spherical polyelectrolyte brushes[J]. Macromolecules, 2011, 44(3): 632-639. doi: 10.1021/ma102337c
    [11] ZHOU Q, LI L, ZHANG T, et al. Preparation of recyclable silver nano-catalysts immobilized on magnetic spherical polyelectrolyte brushes[J]. Journal of East China University of Science and Technology(Natural Science Edition), 2019, 45(4): 541-547.
    [12] SHARMA G, BALLAUFF M. Cationic spherical polyelectrolyte brushes as nanoreactors for the generation of gold particles[J]. Macromolecular Rapid Communications, 2004, 25(4): 547-552. doi: 10.1002/marc.200300107
    [13] BALLAUF M, LU Y. Smart nanoparticles: Preparation, characterization and applications[J]. Polymer, 2007, 48(7): 1815-1823. doi: 10.1016/j.polymer.2007.02.004
    [14] 黄世斌, 董亚明, 郭旭虹. 以纳米球形聚电解质刷为模板制备PS/SiO2: 核壳-纳米杂化粒子和SiO2空心微球[J]. 华东理工大学学报(自然科学版), 2011, 37(6): 655-658.
    [15] WANG S, CHEN K, LI L, et a1. Binding between proteins and cationic spherical polyelectrolyte brushes: Effect of Ph, ionic strength, and stoichiometry[J]. Biomacromolecules, 2013, 14(3): 818-827. doi: 10.1021/bm301865g
    [16] BALLUFF M, WITTEMANN A, HAUPT B. Adsorption of proteins on spherical polyelectrolyte brushes in aqueous solution[J]. Physical chemistry chemical physics, 2003, 5(8): 1671-1677. doi: 10.1039/b300607g
    [17] 刘小驰, 秦丽, 田雨川, 等. 纳米球形聚电解质刷的合成及应用进展[J]. 功能高分子学报, 2013, 26(3): 294-316.
    [18] ZHULINA E B, BIRSHTEIN T M, BORISOV O V. Theory of ionizable polymer brushes[J]. Macromolecules, 2002, 28(5): 1491-1499.
    [19] WANG W H, LI L, YU X J, et al. Distribution of Magnetic Nanoparticles in Spherical Polyelectrolyte Brushes as Observed by Small-Angle X-Ray Scattering[J]. Journal of polymer science Part B: Polymer Physics, 2014, 52(24): 1681-1688. doi: 10.1002/polb.23580
    [20] CANG Y, ZHANG G, SHI G, et al. Immobilized CdS quantum dots in spherical polyelectrolyte brushes: fabrication, characterization and optical properties[J]. Journal of Materials Chemistry C, 2015(3): 3745-3751.
    [21] 郭旭虹, 李莉, 许军, 等. 一种球形聚电解质刷的制备方法及其应用: ZL200810201547.2[P].
    [22] GUO X, BALLAUF M. The spatial dimensions of colloidal brushes as determined by dynamic light scattering[J]. Langmuir, 2000, 16(23): 8719-8726. doi: 10.1021/la000319x
    [23] 郦和生, 谢文州, 谭天伟, 等. 新型反渗透膜阻垢剂YSM-12阻垢性能评价[J]. 工业水处理, 2010, 30(2): 50-52. doi: 10.3969/j.issn.1005-829X.2010.02.015
    [24] BALLAUFF M, GUO X. Spherical polyelectrolyte brushes: Comparison between annealed and quenched brushes[J]. Physical Review E, 2001, 64(5): 1-9.
    [25] 王伟华. 纳米球形聚电解质刷的合成、应用及小角X射线散射表征[D]. 上海: 华东理工大学, 2015.
    [26] QI X, LIU W, LI H, et al. Scale-inhibition of the novel scale inhibitor YSM-11 for reverse osmosis systems[J]. Industrial Water Treatment, 2005, 25(10): 24-26.
  • 加载中
图(8)
计量
  • 文章访问数:  422
  • HTML全文浏览量:  312
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-27
  • 网络出版日期:  2021-01-07

目录

    /

    返回文章
    返回