高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

改性活性炭及其甲醛净化性能

朱鸣凡 廖春鑫 陈爱平 李春忠

朱鸣凡, 廖春鑫, 陈爱平, 李春忠. 改性活性炭及其甲醛净化性能[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20200911005
引用本文: 朱鸣凡, 廖春鑫, 陈爱平, 李春忠. 改性活性炭及其甲醛净化性能[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20200911005
ZHU Mingfan, LIAO Chunxin, CHEN Aiping, LI Chunzhong. Modified Activated Carbon and Its Formaldehyde Purification Performance[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20200911005
Citation: ZHU Mingfan, LIAO Chunxin, CHEN Aiping, LI Chunzhong. Modified Activated Carbon and Its Formaldehyde Purification Performance[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20200911005

改性活性炭及其甲醛净化性能

doi: 10.14135/j.cnki.1006-3080.20200911005
基金项目: 国家自然科学基金(21838003,91834301);上海市科技创新项目(18JC1410600,19JC1410400);上海市教委创新计划、中央高校基础研究基金(222201718002)
详细信息
    作者简介:

    朱鸣凡(1995—),男,江苏苏州人,硕士生,研究方向为空气污染物治理材料的制备。E-mail:635020684@qq.com

    通讯作者:

    陈爱平,E-mail:apchen@ecust.edu.cn

  • 中图分类号: X511

Modified Activated Carbon and Its Formaldehyde Purification Performance

  • 摘要: 经氧化剂与亲核加成剂分步复合改性后,制得改性活性炭。通过BET比表面积测试法分析测定活性炭比表面积和孔结构等参数。以甲醛作为模型污染物,测试改性活性炭对空气中甲醛的净化性能。结果表明,通过先氧化剂后亲核加成剂的分步复合改性后,活性炭对甲醛的快速净化效率显著提高,而通过先亲核加成剂后氧化剂的分步复合改性后,活性炭表现出优异的长效净化效果。活性炭经先浸渍2-咪唑烷酮后浸渍次氯酸钠的分步复合改性后,椰壳活性炭和煤质活性炭对甲醛的长效净化率分别达到94.2%和96.2%。

     

  • 图  1  单一氧化剂或单一亲核加成剂改性活性炭N2吸附-脱附等温曲线

    Figure  1.  Nitrogen adsorption-desorption isothermal curves of different kinds of activated carbon modified by oxidant or nucleophilic addition reagent separately

    图  2  单一氧化剂或亲核加成剂改性活性炭的甲醛净化性能

    Figure  2.  Formaldehyde purification performance of activated carbon modified by oxidant or nucleophilic addition reagent separately

    图  3  亲核加成剂与氧化剂混合改性活性炭的甲醛净化性能

    Figure  3.  Formaldehyde purification performance of activated carbon modified by the mixture of nucleophilic addition reagent and oxidant

    图  4  亲核加成剂与氧化剂复合改性活性炭的甲醛净化性能

    Figure  4.  Formaldehyde purification performance of activated carbon modified by nucleophilic addition reagent and oxidant in different combination way

    图  5  活性炭改性前后甲醛长效净化性能

    Figure  5.  Long-term formaldehyde purification performance of activated carbon before and after modification

    图  6  亲核加成剂与氧化剂改性活性炭净化甲醛的机理

    Figure  6.  Formaldehyde purification mechanism of active carbon modified by nucleophilic addition reagent and oxidant

    表  1  不同种类氧化剂溶液

    Table  1.   Different kinds of oxidant solutions

    Serial numberOxidantc/(mol·L−1)
    1Sodium hypochlorite0.5
    2Sodium chlorate0.5
    3Hydrogen peroxide (w=30%)0.5
    4Sodium perborate, Monohydrate0.2
    下载: 导出CSV

    表  2  单一氧化剂或单一亲核加成剂改性活性炭的比表面积及孔结构参数

    Table  2.   Specific area and pore textural parameters of activated carbon modified by oxidant or nucleophilic addition reagent separately

    SampleSBET/(m2·g−1Vmic/(cm3·g−1Vmeso/(cm3·g−1Vtot/(cm3·g−1d/nm
    YK238.80.0880.0310.1192.123
    YK-Y-1195.30.0720.0380.1102.344
    YK-Y-2158.50.0580.0250.0832.197
    YK-Y-3229.10.0860.0310.1172.238
    YK-Y-4181.90.0700.0210.0912.104
    YK-Q181.20.0610.0330.0942.217
    MZ284.40.0980.0740.1722.488
    MZ-Y-1189.60.0630.0540.1172.473
    MZ-Y-2256.40.0840.0680.1522.487
    MZ-Y-3322.90.1090.0840.1932.496
    MZ-Y-4292.20.0970.0720.1692.378
    MZ-Q278.30.0920.0800.1722.546
    下载: 导出CSV

    表  3  亲核加成剂与氧化剂混合改性活性炭的比表面积及孔结构参数

    Table  3.   Specific area and pore textural parameters of activated carbon modified by the mixture of nucleophilic addition reagent and oxidant

    SampleSBET/(m2·g−1Vmic/(cm3·g−1Vmeso/(cm3·g−1Vtot/(cm3·g−1d/nm
    YK238.80.0880.0310.1192.123
    YK-YQ-1139.10.0490.0260.0752.237
    YK-YQ-2174.00.0580.0340.0922.245
    YK-YQ-3279.00.1040.0410.1452.237
    YK-YQ-4180.20.0650.0280.0932.197
    MZ284.30.0980.0740.1722.488
    MZ-YQ-1112.30.0340.0360.0702.493
    MZ-YQ-2198.70.0580.0660.1242.553
    MZ-YQ-3302.30.1040.0750.1792.469
    MZ-YQ-4260.80.0820.0750.1572.467
    下载: 导出CSV

    表  4  亲核加成剂与氧化剂分步复合改性活性炭的比表面积及孔结构参数

    Table  4.   Specific area and pore textural parameters of activated carbon modified by nucleophilic addition reagent and oxidant in different combination way

    SampleSBET/(m2·g−1Vmic/(cm3·g−1Vmeso/(cm3·g−1Vtot/(cm3·g−1d/nm
    YK238.80.0880.0310.1192.123
    YK-Q-Y174.40.0610.0300.0912.208
    YK-Y-Q104.80.0380.0180.0562.200
    YK-YQ-1139.10.0490.0260.0752.237
    MZ284.40.0980.0740.1722.488
    MZ-Q-Y287.80.0940.0740.1682.401
    MZ-Y-Q252.00.0810.0630.1442.370
    MZ-YQ-1112.30.0340.0360.0702.493
    下载: 导出CSV
  • [1] 梁雪松, 殷明杰, 刘晓秋, 等. 室内空气甲醛污染相关问题研究进展[J]. 中国公共卫生管理, 2019, 35(3): 343-348.
    [2] 侯森. 室内环境甲醛的危害及控制措施探讨[J]. 科技风, 2019, 32: 226.
    [3] 胡星梦. TiO2-AC/树脂/沸石催化净化室内甲醛实验研究[D]. 内蒙古包头: 内蒙古科技大学, 2019.
    [4] 崔笑颖. 活性炭改性方法及其对水中氨氮吸附性能的技术研究[D]. 河北张家口: 河北建筑工程学院, 2019.
    [5] 刘秀玉, 张浩. 改性生物质活性炭对甲醛气体吸附性能[J]. 非金属矿, 2019, 42(4): 82-85. doi: 10.3969/j.issn.1000-8098.2019.04.025
    [6] 任改玲. 不同酸改性活性炭去除水溶液中Cr(VI)的研究[J]. 山西化工, 2019, 39(6): 13-15, 20.
    [7] 肖榕. 尿素改性活性炭对水中汞离子的吸附性能研究[J]. 广州化工, 2017, 45(23): 49-51. doi: 10.3969/j.issn.1001-9677.2017.23.019
    [8] RYU D Y, SHIMOHARA T, NAKABAYASHI K, et al. Urea/nitric acid co-impregnated pitch-based activated carbon fiber for the effective removal of formaldehyde[J]. Journal of Industrial and Engineering Chemistry, 2019, 80: 98-105. doi: 10.1016/j.jiec.2019.07.036
    [9] SINGH J, BHUNIA H, BASU S. Adsorption of CO2 on KOH activated carbon adsorbents: Effect of different mass ratios[J]. Journal of Environmental Management, 2019, 250: 109457. doi: 10.1016/j.jenvman.2019.109457
    [10] 姚炜屹, 王际童, 乔文明, 等. 活性炭纤维孔结构和表面含氧官能团对甲醛吸附性能的影响[J]. 华东理工大学学报(自然科学版), 2019, 45(5): 697-703.
    [11] 刘峥, 韦梦琴, 杜玥莹, 等. 活化温度对桉树皮基活性炭的特性影响及吸附性能研究[J]. 生态与农村环境学报, 2020, 36(2): 265-271.
    [12] 王常海. 比表面及孔隙分析仪测试中吸附曲线-脱附曲线不闭合的原因分析[J]. 建筑工程技术与设计, 2014, 28: 906. doi: 10.3969/j.issn.2095-6630.2014.18.0399
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  939
  • HTML全文浏览量:  760
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-11
  • 网络出版日期:  2020-10-27

目录

    /

    返回文章
    返回