高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

柔性电子多尺度纳米银颗粒薄膜力学性能仿真

李超 秦宗慧 孙权 陈建钧 鹿业波 汤成莉

李超, 秦宗慧, 孙权, 陈建钧, 鹿业波, 汤成莉. 柔性电子多尺度纳米银颗粒薄膜力学性能仿真[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20200911004
引用本文: 李超, 秦宗慧, 孙权, 陈建钧, 鹿业波, 汤成莉. 柔性电子多尺度纳米银颗粒薄膜力学性能仿真[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20200911004
LI Chao, QIN Zonghui, SUN Quan, CHEN Jianjun, LU Yebo, TANG Chengli. Simulation on Mechanical Properties of Flexible Electronic Multi-Scale Silver Nanoparticles Film[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20200911004
Citation: LI Chao, QIN Zonghui, SUN Quan, CHEN Jianjun, LU Yebo, TANG Chengli. Simulation on Mechanical Properties of Flexible Electronic Multi-Scale Silver Nanoparticles Film[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20200911004

柔性电子多尺度纳米银颗粒薄膜力学性能仿真

doi: 10.14135/j.cnki.1006-3080.20200911004
基金项目: 浙江省自然科学基金(LQ19E050008)
详细信息
    作者简介:

    李超:李 超(1992-),男,安徽人,硕士生,主要研究方向为柔性电子力学稳定性。E-mail:y30180344@mail.ecust.edu.cn

    通讯作者:

    秦宗慧,E-mail:zhqin@mail.ecust.edu.cn

    孙  权,E-mail:sunquan0501@163.com

  • 中图分类号: TH114

Simulation on Mechanical Properties of Flexible Electronic Multi-Scale Silver Nanoparticles Film

  • 摘要: 纳米银颗粒由于其优越的物理化学性能被广泛应用于柔性电子产品中,单一的纳米银颗粒烧结形成的薄膜因缺陷较多而面临诸多挑战。通过有限元对50 nm和10 nm两种大、小银混合颗粒下薄膜的力学性能进行了研究。模拟过程中将大颗粒之间的填充间距作为参数来表征大、小颗粒的混合质量比。仿真结果表明,当填充间距较小时,小颗粒作为填充区域受到的应力不均匀,容易发生裂纹;当填充间距过大时,填充区域孔隙的增加导致薄膜强度降低;混合模式下填充间距为50 nm时纳米银颗粒薄膜的力学性能更优越。

     

  • 图  1  二维Voronoi多颗粒模型

    Figure  1.  2D Voronoi multi-particles model

    图  2  大小颗粒混合示意图

    Figure  2.  Schematic diagram of big and small nanoparticles mixing

    图  3  薄膜-基底模型

    Figure  3.  Film-substrate model

    图  4  双线性内聚力模型张力-位移关系

    Figure  4.  Traction-displacement relationship of bilinear cohesive zone model

    图  5  不同填充间距下薄膜应力-应变曲线

    Figure  5.  Stress-strain curves of thin films with different filling spacing    

    图  6  不同填充间距下自由薄膜裂纹形貌

    Figure  6.  Cracks morphology of free films with different filling spacing   

    图  7  基底上不同填充间距下薄膜裂纹面积变化

    Figure  7.  Changes of crack area of films with different filling spacing on substrate

    图  8  不同填充间距下基底上薄膜裂纹形貌

    Figure  8.  Cracks morphology of film on substrate with different filling spacing

  • [1] SMITH J, BAWOLEK E, LEE Y K, et al. Application of flexible flat panel display technology to wearable biomedical devices[J]. Electronics Letters, 2015, 51(17): 1312-1314. doi: 10.1049/el.2015.1497
    [2] YIN D, CHEN Z Y, JIANG N R, et al. Highly transparent and flexible fabric-based organic light emitting devices for unnoticeable wearable displays[J]. Organic Electronics, 2019, 76: 105494.
    [3] MANDA R, PAGIDI S, LIM Y J, et al. Self-supported liquid crystal film for flexible display and photonic applications[J]. Journal of Molecular Liquids, 2019, 291: 111314-111323. doi: 10.1016/j.molliq.2019.111314
    [4] YU J B, HOU X J, HE J, et al. Ultra-flexible and high-sensitive triboelectric nanogenerator as electronic skin for self-powered human physiological signal monitoring[J]. Nano Energy, 2020, 69: 104437. doi: 10.1016/j.nanoen.2019.104437
    [5] YUAN H, LEI T, QIN Y, et al. Flexible electronic skins based on piezoelectric nanogenerators and piezotronics[J]. Nano Energy, 2019, 59: 84-90. doi: 10.1016/j.nanoen.2019.01.072
    [6] XU S, ZHANG Y, CHO J, et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems[J]. Nature Communications, 2013, 4: 1543-1550. doi: 10.1038/ncomms2553
    [7] SOMEYA T, KATO Y, SEKITANI T, et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(35): 12321-12325. doi: 10.1073/pnas.0502392102
    [8] 陈成, 陆慧. 无机缓冲层对柔性AZO薄膜光电性质与弯曲性能的影响[J]. 华东理工大学学报(自然科学版), 2020, 46(4): 573-578.
    [9] TANG C C, ZHENG S H, WANG F, et al. Microwave- assisted two-steps method for the facile preparation of silver nanoparticle conductive ink[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(12): 11588-11597. doi: 10.1007/s10854-019-01516-5
    [10] TANG C L, XING B, HU G S, et al. A facile microwave approach to the fast-and-direct production of silver nano-ink[J]. Materials Letters, 2017, 188: 220-223. doi: 10.1016/j.matlet.2016.11.009
    [11] TANG Y, HE W, ZHOU G Y, et al. A new approach causing the patterns fabricated by silver nanoparticles to be conductive without sintering[J]. Nanotechnology, 2012, 23(35): 355304. doi: 10.1088/0957-4484/23/35/355304
    [12] LIU Z Y, JI H J, WANG S, et al. Enhanced electrical and mechanical properties of a printed bimodal silver nanoparticle ink for flexible electronics[J]. Physica Status Solidi A, 2018, 215(14): 1800007. doi: 10.1002/pssa.201800007
    [13] LI M Y, XIAO Y, ZHANG Z H, et al. Bimodal sintered silver nanoparticle paste with ultrahigh thermal conductivity and shear strength for high temperature thermal interface material applications[J]. ACS Applied Materials and Interfaces, 2015, 7(17): 9157-9168. doi: 10.1021/acsami.5b01341
    [14] BALANTRAPU K, MCMURRAN M, GOIA D V. Inkjet printable silver dispersions: Effect of bimodal particle-size distribution on film formation and electrical conductivity[J]. Journal of Materials Research, 2010, 25(5): 821-827. doi: 10.1557/JMR.2010.0124
    [15] XIANG Y, LI T, SUO Z G, et al. High ductility of a metal film adherent on a polymer substrate[J]. Applied Physics Letters, 2005, 87(16): 911-917.
    [16] LI T, SUO Z. Ductility of thin metal films on polymer substrates modulated by interfacial adhesion[J]. International Journal of Solids and Structures, 2007, 44(6): 1696-1705. doi: 10.1016/j.ijsolstr.2006.07.022
    [17] HSU J, LEE C, WEN B, et al. Experimental and simulated investigations of thin polymer substrates with an indium tin oxide coating under fatigue bending loadings.[J]. Materials, 2016, 9(9):720. doi: 10.3390/ma9090720.
    [18] XU W, LU T J, WANG F. Effects of interfacial properties on the ductility of polymer-supported metal films for flexible electronics[J]. International Journal of Solids and Structures, 2010, 47(14/15): 1830-1837. doi: 10.1016/j.ijsolstr.2010.03.017
    [19] 李杰杰, 鲁斌斌, 线跃辉, 等. 纳米多孔银力学性能表征分子动力学模拟[J]. 物理学报, 2018, 67(5): 226-234.
    [20] ZHANG Z, LI T. Effects of grain boundary adhesion and grain size on ductility of thin metal films on polymer substrates[J]. Scripta Materialia, 2008, 59(8): 862-865. doi: 10.1016/j.scriptamat.2008.06.058
    [21] 许巍, 杨金水, 王飞, 等. 含曲线型膜基界面的高分子基金属薄膜延展性能[J]. 固体力学学报, 2011(1): 6-14.
    [22] SLUIS O, HSU Y Y, TIMMERMANS P H M, et al. Stretching-induced interconnect delamination in stretchable electronic circuits[J]. Journal of Physics D: Applied Physics, 2010, 44(3): 034008.
    [23] LUTHER T, KÖNKE C. Polycrystal models for the analysis of intergranular crack growth in metallic materials[J]. Engineering Fracture Mechanics, 2009, 76(15): 2332-2343. doi: 10.1016/j.engfracmech.2009.07.006
  • 加载中
图(8)
计量
  • 文章访问数:  528
  • HTML全文浏览量:  348
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-11
  • 网络出版日期:  2020-12-16

目录

    /

    返回文章
    返回