Torque Control and Simulation Analysis of a Symmetrical Six-Phase PMSM
-
摘要: 为改善多相电机转矩控制策略性能,以对称六相永磁同步电机为研究对象,结合其结构和绕组分布特点建立自然坐标系下数学模型。由于多相电磁耦合下计算复杂,推导出旋转坐标系下的矢量变换模型。针对多相电机启动转矩波动较大现象,提出一种新的基于空间矢量脉宽调制(SVPWM)技术的直接转矩控制(DTC)策略。在MATLAB/Simulink环境下,对电机的矢量解耦变换下的数学模型进行仿真研究。结果表明,相比于传统直接转矩控制,所设计的新算法对电机电磁转矩、磁链等方面具有更好的抗扰动性和调控性能,验证了所开发控制算法的有效性和可行性。Abstract: In order to improve the performance of multi-phase motor torque control strategy, the symmetrical six-phase permanent magnet synchronous motor was taken as the research object. On the basis of its structure and winding distribution characteristics, a mathematical model in a natural coordinate system was established. In view of the complexity of calculation under multiphase electromagnetic coupling, the vector transformation model under the rotating coordinate system was derived. In consideration of the large starting torque fluctuation of multiphase motors, a new direct torque control (DTC) strategy based on SVPWM technology was proposed. In the MATLAB/Simulink environment, the mathematical model under the vector decoupling transformation of the motor was simulated. The results showed that the proposed control algorithm presented better anti-disturbance and regulation performance on the motor electromagnetic torque, flux linkage and other parameters than the traditional direct torque control. The study demonstrates the effectiveness and feasibility of the developed control algorithm.
-
表 1 各扇区间电压矢量开关表
Table 1. Voltage vector switch table between sectors
Sector 1 2 3 4 5 6 F T ↑ ↑ ↑ V56 V28 V14 V7 V35 V49 ↑ V58 V20 V46 V5 V43 V17 ↑ ↓ V42 V21 V42 V21 V42 V21 ↓ V43 V17 V58 V20 V46 V5 ↓ ↓ V35 V49 V56 V28 V14 V7 ↓ ↑ ↑ V28 V14 V7 V35 V49 V56 ↑ V20 V46 V5 V43 V17 V58 ↑ ↓ V21 V42 V21 V42 V21 V42 ↓ V5 V43 V17 V58 V20 V46 ↓ ↓ V7 V35 V49 V56 V28 V14 表 2 仿真参数表
Table 2. Simulation parameter table
Stator
resistance/ΩLd/
mHLq/
mHLz/
mHψγ/
WbMoment of inertia/(kg·m2) B pn 1.5 8.2 8.2 1.7 0.68 0.015 0.008 3 B—Damping coefficient; pn—Number of pole pairs -
[1] 陈丽香, 潘敬涛, 孙宁. 新能源汽车用永磁电机转子结构分析[J]. 电机与控制应用, 2019, 46(2): 114-119. doi: 10.3969/j.issn.1673-6540.2019.02.020 [2] MARWA B, LARBI K. Dual stator induction motor operation from two PWM voltage source inverters[C]// International Conference on Electrical Engineering and Software Applications, 2013: 1-15. [3] WILLIAMSON S, SMITH S. Pulsating torque and losses in multiphase induction machines[J]. Transactions on Industry Applications, 2003, 39(4): 986-993. doi: 10.1109/TIA.2003.813722 [4] MOHAPATRA K, GOPAKUMAR K, SOMASEKHAR V T. A harmonic elimination scheme for an open-end winding induction motor drive[J]. Transations on Industrial Electronics, 2003, 50(4): 1187-1198. [5] BOJOI R, FARINA F, TENCONI A, et al. Stationary frame digital current regulation for dual-three phase induction motor drives[C]// Proceedings of IEEE Power Electronics Specialists Conference PESC, 2004: 2121–2127. [6] 薛山, 温旭辉. 多相永磁同步电机多维控制技术[J]. 电工技术学报, 2008, 23(9): 65-69. doi: 10.3321/j.issn:1000-6753.2008.09.010 [7] JONES M, VUKOSAVIC S N, LEVI E, et al. A six-phase series connected two-motor drive with decoupled dynamic control[J]. Transactions on Industry Applications, 2005, 41(4): 1056-1066. doi: 10.1109/TIA.2005.851020 [8] 薛诚, 宋文胜, 冯晓云. 五相永磁同步电机多目标优化直接转矩控制算法[J]. 中国电机工程学报, 2016, 36(6): 1695-1704. [9] 胡育文, 高瑾, 杨建飞, 等. 永磁同步电动机直接转矩控制系统[M]. 北京: 机械工业出版社, 2015. [10] 郭飞. 双三相永磁同步电机无速度传感器矢量控制系统研究[D]. 江苏 徐州: 中国矿业大学, 2019. [11] 陶涛, 花良浩, 马小燕, 等. 五相永磁同步电机与传统三相永磁同步电机对比分析[J]. 微特电机, 2017, 45(11): 47-53. [12] 孙旭霞, 高沁源, 孙伟. 基于SVPWM的永磁同步电机直接转矩控制系统[J]. 电气传动, 2016, 46(11): 3-6. -