高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

带档板摇瓶中形成流场的数值模拟及其对克拉维酸菌种及发酵培养过程影响的分析

冯涛 夏建业 储炬

冯涛, 夏建业, 储炬. 带档板摇瓶中形成流场的数值模拟及其对克拉维酸菌种及发酵培养过程影响的分析[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20200903030
引用本文: 冯涛, 夏建业, 储炬. 带档板摇瓶中形成流场的数值模拟及其对克拉维酸菌种及发酵培养过程影响的分析[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20200903030
FENG Tao, XIA Jianye, CHU Ju. Numerical Simulation of Baffled Flask Flow Field and Analysis of Its Effects on Clavulanic Acid Seed and Fermentation Culture Process[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20200903030
Citation: FENG Tao, XIA Jianye, CHU Ju. Numerical Simulation of Baffled Flask Flow Field and Analysis of Its Effects on Clavulanic Acid Seed and Fermentation Culture Process[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20200903030

带档板摇瓶中形成流场的数值模拟及其对克拉维酸菌种及发酵培养过程影响的分析

doi: 10.14135/j.cnki.1006-3080.20200903030
基金项目: 国家自然科学基金项目(21978085,21776082);山西省科技成果转化引导专项(201804D121004)
详细信息
    作者简介:

    冯涛:冯 涛(1980-),男,山西晋中人,博士生,研究方向:发酵过程工艺优化与工业化放大

    通讯作者:

    夏建业,E-mail:jyxia@ecust.edu.cn

  • 中图分类号: Q815

Numerical Simulation of Baffled Flask Flow Field and Analysis of Its Effects on Clavulanic Acid Seed and Fermentation Culture Process

  • 摘要: 提出了一种用于模拟摇瓶内气液两相流动的计算流体力学模型——旋转离心加速度模型法。使用该方法成功模拟摇瓶内的气液两相流动,利用形成的模型分别考察了摇瓶挡板作用、摇床转速、摇瓶装液量等对形成的流场中的传质及剪切环境进行了详细研究,结果表明挡板的存在增加了摇瓶内的气液传氧能力,并且提供更大的剪切环境。转速有利于提升气液传质能力,而特定转速下存在最佳的装液量以提供最优的气液氧传质能力。并且考察了在不同摇瓶培养条件下,对好氧菌——棒状链霉菌种子及发酵培养的影响,通过对比过程菌丝形态特征及产物克拉维酸合成情况,结合流场模拟结果分析了挡板摇瓶对克拉维酸种子及发酵培养获得较不带挡板摇瓶更好结果的流场原因。

     

  • 图  1  克拉维酸分子结构式

    Figure  1.  Clavulanic acid molecular structure formula

    图  2  带一个挡板3L摇瓶

    Figure  2.  3L Flask with one baffle

    图  3  摇瓶运动过程中药瓶内发酵液流体微元受力分析

    Figure  3.  Analysis of the fluid micro-element force in the fermentation liquid of the medicine bottle during shake flask movement

    图  4  摇床运动原理示意图

    Figure  4.  Schematic diagram of shaker movement principle

    图  5  利用本文提出的旋转离心加速度模型模拟得到的不同时刻形成的气液流动自由表面(80 r/min)

    Figure  5.  The gas-liquid flow free surface (80 r/min), which is formed at different times, is simulated by the rotational centrifugal acceleration model proposed in this paper

    图  6  不同转速下带档板与不带挡板摇瓶中传质参数流场预测值对比(装液量680 mL)

    Figure  6.  Comparison of flow field prediction values of mass transfer parameters between shaker flask with and without baffle at different speeds (liquid volume 680 mL)

    图  7  不同转速下带档板和不带挡板摇瓶形成的气液自由表面对比

    Figure  7.  Comparison of gas-liquid free surface formed by shaking flask with and without baffle at different rotating speed

    图  8  带档板摇瓶中不同装液量下流场参数CFD模拟预测值(摇床转速120 r/min)(a)气液交界面面积;(b)气液比表面积;(c)平均液膜传质系数;(d)体积气液传质系数平均值

    Figure  8.  CFD simulation prediction value of flow field parameters under different liquid loading in shaking flask with gear plate (rotating speed of shaking table 120 r/min) (a) Gas-liquid interface area; (b) Gas-liquid specific surface area; (c) Average liquid membrane mass transfer coefficient; (d) Volume gas-liquid mass transfer coefficient average

    图  9  带档板与不带挡板摇瓶中种子培养过程参数变化对比

    Figure  9.  Comparison of seed culture parameters in shaking flask with and without baffle

    图  10  带档板与不带挡板摇瓶中装液量对克拉维酸的影响

    Figure  10.  Effect of liquid content in shaking flask with and without baffle on clavulanic acid

    表  1  不同转速下带档板与不带档板摇瓶中平均剪切应变率(SSR)大小对比

    Table  1.   Comparison of average shear strain rate (SSR) in shaker with and without shaker at different rotational speeds

    Roatation speed/(r·min−1)Average SSR/s−1Relative difference/%
    BaffledUnbaffled
    402.752.702
    8022.4816.6335
    12040.0030.9329
    16060.1851.0918
    下载: 导出CSV
  • [1] XIA J, WANG G, LIN J, et al. Advances and practices of bioprocess scale-up[J]. Advances in Biochemical Engineering-Biotechnology, 2016, 152: 137-151.
    [2] 何伟. 克拉维酸发酵过程工艺优化[D]. 华东理工大学, 2013.
    [3] 丁健, 槐强强. 基于自动化和计算流体力学技术的发酵工厂设计课程教学探索[J]. 教育教学论坛, 2016, 0(17): 136-137. doi: 10.3969/j.issn.1674-9324.2016.17.066
    [4] 董淑浩, 朱萍, 徐晓滢, 等. 高粘发酵体系不同搅拌桨的CFD模拟及发酵验证[J]. 生物工程学报, 2015, 31(7): 1099-1107.
    [5] MAYER A F, DECKWER W D. Simultaneous production and decomposition of clavulanic acid during Streptomyces clavuligerus cultivations.[J]. Applied Microbiology and Biotechnology, 1996, 45(1/2): 41-46.
    [6] 何伟, 冯涛, 王永红, 等. 有机氮源氨基酸组成对克拉维酸发酵的影响[J]. 华东理工大学(自然科学版), 2013, 6(39): 669-674.
    [7] KHALEELI N L R. The origin of the carbons of clavulanic acid[J]. Journal of the Chemical Society, Chemical Communications, 1999: 1025-1026.
    [8] THIRKETTLE JE B J E J. The origin of the β-lactam carbons of clavulanic acid[J]. Journal of the Chemical Society, Chemical Communications, 1997: 1025-1026.
    [9] TOWNSEND C A. The role of molecular oxygen in clavulanic acid biosynthesis: evidence for bacterial oxidative deamination[J]. Journal of the Chemical Society, Chemical Communications, 1988: 1234-1236.
    [10] 朱校适, 冯涛, 王永红, 等. 克拉维酸发酵过程变温控制的研究[J]. 中国抗生素杂志, 2008, 33(8): 467-470.
    [11] 蒋顺进, 杨亚勇, 王惠青. 克拉维酸发酵工艺的优化研究[J]. 中国抗生素杂志, 2004(6): 335-337. doi: 10.3969/j.issn.1001-8689.2004.06.005
    [12] SCHMIDT F R. Optimization and scale up of industrial fermentation processes[J]. Applied Microbiology and Biotechnology., 2005, 68(4): 425-435. doi: 10.1007/s00253-005-0003-0
    [13] 王艳萍, 郭金体, 张阳, 等. 无机盐MgCl2和微量金属离子Zn2+对克拉维酸产量的影响[J]. 天津科技大学学报, 2008(1): 13-16. doi: 10.3969/j.issn.1672-6510.2008.01.004
    [14] 朱薇玲. 克拉维酸产生菌的优化培养[J]. 生物技术, 2003(1): 27-28. doi: 10.3969/j.issn.1004-311X.2003.01.019
    [15] 李丹丹, 黄喜桂, 林文良, 等. 棒状链霉菌甘油耐受量与克拉维酸合成的关系[J]. 中国抗生素杂志., 1999(1): 14-15.
    [16] HIGBIE R L. The Rate of Absorption of a Pure Gas into a Still Liquid during Short Periods of Exposure[J]. American Institute of Chemical Engineers, 1935(35): 365-389.
    [17] DANCKWERTS P V. Significance of liquid-film coefficients in gas absorption[J]. Industrial & Engineering Chemistry, 1951(43): 1460-1467.
    [18] AZIZAN A, BÜCHS J. Three-dimensional (3D) evaluation of liquid distribution in shake flask using an optical fluorescence technique[J]. Journal of Biological Engineering, 2017, 11(1): 28. doi: 10.1186/s13036-017-0070-7
    [19] ZHANG H, WILLIAMS-DALSON W, KESHAVARZ-MOORE E, et al. Computational-fluid-dynamics (CFD) analysis of mixing and gas-liquid mass transfer in shake flasks[J]. Biotechnology and Applied Biochemistry, 2005, 41(Part 1): 1-8.
    [20] LI C, XIA J, CHU J, et al. CFD analysis of the turbulent flow in baffled shake flasks[J]. Biochemical Engineering Journal, 2013, 70: 140-150. doi: 10.1016/j.bej.2012.10.012
    [21] HORVATH I R, CHATTERJEE S G. A surface renewal model for unsteady-state mass transfer using the generalized Danckwerts age distribution function[J]. Royal Society Open Science, 2018, 5(5): 172423. doi: 10.1098/rsos.172423
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  262
  • HTML全文浏览量:  190
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-03
  • 网络出版日期:  2021-01-25

目录

    /

    返回文章
    返回