高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

带档板摇瓶中流场数值模拟及克拉维酸发酵培养研究

冯涛 夏建业 储炬

冯涛, 夏建业, 储炬. 带档板摇瓶中流场数值模拟及克拉维酸发酵培养研究[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20200903030
引用本文: 冯涛, 夏建业, 储炬. 带档板摇瓶中流场数值模拟及克拉维酸发酵培养研究[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20200903030
FENG Tao, XIA Jianye, CHU Ju. Numerical Simulation of Baffled Flask Flow Field and Study on Clavulanic Acid Fermentation Culture[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20200903030
Citation: FENG Tao, XIA Jianye, CHU Ju. Numerical Simulation of Baffled Flask Flow Field and Study on Clavulanic Acid Fermentation Culture[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20200903030

带档板摇瓶中流场数值模拟及克拉维酸发酵培养研究

doi: 10.14135/j.cnki.1006-3080.20200903030
基金项目: 国家自然科学基金(21978085,21776082);山西省科技成果转化引导专项(201804D121004)
详细信息
    作者简介:

    冯涛:冯 涛(1980-),男,山西晋中人,博士生,研究方向为发酵过程工艺优化与工业化放大。E-mail:peach9@126.com

    通讯作者:

    夏建业,E-mail:jyxia@ecust.edu.cn

  • 中图分类号: Q815

Numerical Simulation of Baffled Flask Flow Field and Study on Clavulanic Acid Fermentation Culture

  • 摘要: 提出了一种用于模拟摇瓶内气液两相流动的计算流体力学模型−旋转离心加速度模型,利用该模型成功模拟了摇瓶内的气液两相流动,并分别考察了摇瓶挡板、转速、装液量等参数对传质及剪切环境的影响。结果表明:摇瓶内加装挡板可增加气液传质能力,并且提供了更大的剪切环境;提高转速有利于提升气液传质能力,特定转速下存在提供最大气液传质能力的最佳装液量。最后,利用流场模拟结果,分析了带挡板摇瓶较不带挡板摇瓶对克拉维酸种子及其发酵培养结果更好的原因。该文方法可推广到其他品种发酵摇瓶的流场分析。

     

  • 图  1  带一个挡板的3 L摇瓶

    Figure  1.  3 L Flask with one baffle

    图  2  摇瓶运动过程中发酵液流体微元受力分析

    Figure  2.  Analysis of the fluid micro-element force in the fermentation liquid during shake flask movement

    图  3  摇床运动原理示意图

    Figure  3.  Schematic diagram of shaker movement principle

    图  4  利用本文提出的旋转离心加速度模型模拟得到的不同时刻气液流动自由表面(80 r/min)

    Figure  4.  Gas-liquid flow free surface at different time by the rotational centrifugal acceleration model proposed in this paper (80 r/min)

    图  5  不同转速下带档板与不带挡板摇瓶中传质参数流场预测值对比(装液量600 mL)

    Figure  5.  Comparison of flow field prediction values of mass transfer parameters between shaker flask with baffle and without baffle at different speeds (filling volume 600 mL)

    图  6  不同转速下带档板和不带挡板摇瓶中形成的气液自由表面对比

    Figure  6.  Comparison of gas-liquid free surface formed by shaking flask with baffle and without baffle at different rotating speeds

    图  7  带档板摇瓶中不同装液量下流场参数CFD模拟预测值(摇床转速120 r/min)

    Figure  7.  CFD simulation prediction value of flow field parameters under different liquid loading in shaking flask with gear plate (rotating speed of shaking table 120 r/min)

    图  8  带档板与不带挡板摇瓶中种子培养过程参数变化对比

    Figure  8.  Comparison of seed culture parameters in shaking flask with baffle and without baffle

    图  9  3 L带挡板与不带挡板摇瓶中克拉维酸发酵菌丝形态(装液量650 mL,培养120 h)

    Figure  9.  Clavulanic acid mycelium morphology in 3 L flask with baffle and without baffle (Filling volume 650 mL, cultivation 120 h)

    图  10  带档板与不带挡板摇瓶中装液量对克拉维酸发酵的影响

    Figure  10.  Effect of filling volume in shaking flask with baffle and without baffle on clavulanic acid fermentation

    表  1  不同转速下带档板与不带档板摇瓶中平均剪切应变率(SSR)大小对比

    Table  1.   Comparison of average shear strain rate (SSR) in shaking flask with and without baffle at different rotational speeds

    Rotational
    speed/(r·min−1)
    Average of ${\dot{Y}\!/\!{\rm s}} $ −1Relative
    difference/%
    With baffleWithout baffle
    402.752.702
    8022.4816.6335
    12040.0030.9329
    16060.1851.0918
    下载: 导出CSV

    表  2  带档板和不带挡板摇瓶中不同装液量下菌丝形态对比(培养120 h)

    Table  2.   Comparison of mycelium morphology under different filling volume in shake flasks with baffle and without baffle (cultivation 120 h)

    Filling volume/mLMycelium morphology
    With baffleWithout baffle
    150No mycelium ball, little broken, short and many branches,
    few black intracelluar particles
    Mycelium ball, dyeing uniformity, few branches,
    few breaks, no black intracellular particles
    250No mycelium ball, little broken, short and many branches,
    few black intracelluar particles
    Mycelium ball, dyeing uniformity, few branches,
    few breaks, no black intracellular particles
    500No mycelium ball, little broken, short and many branches,
    few black intracelluar particles
    Mycelium ball, more and long branches,
    few breaks, no black intracellular particles
    650More broken,shorter and more branches,
    more black intracelluar particles
    Few mycelium ball, thin and long, with long branches,
    no cavitation, few black intracelluar particles
    900More broken,shorter and more branches,
    more black intracelluar particles
    No mycelium ball, thin and long, with long branches,
    no cavitation, few black intracelluar particles
    下载: 导出CSV
  • [1] XIA J, WANG G, LIN J, et al. Advances and practices of bioprocess scale-up[J]. Advances in Biochemical Engineering-Biotechnology, 2016, 152: 137-151.
    [2] 何伟. 克拉维酸发酵过程工艺优化[D]. 上海: 华东理工大学, 2013.
    [3] 丁健, 槐强强. 基于自动化和计算流体力学技术的发酵工厂设计课程教学探索[J]. 教育教学论坛, 2016(17): 136-137. doi: 10.3969/j.issn.1674-9324.2016.17.066
    [4] 董淑浩, 朱萍, 徐晓滢, 等. 高黏发酵体系不同搅拌桨的CFD模拟及发酵验证[J]. 生物工程学报, 2015, 31(7): 1099-1107.
    [5] MAYER A F, DECKWER W D. Simultaneous production and decomposition of clavulanic acid during Streptomyces clavuligerus cultivations.[J]. Applied Microbiology and Biotechnology, 1996, 45(1/2): 41-46.
    [6] 何伟, 冯涛, 王永红, 等. 有机氮源氨基酸组成对克拉维酸发酵的影响[J]. 华东理工大学(自然科学版), 2013, 39(6): 669-674.
    [7] KHALEELI N, LI R F, TOWNSEND C. The origin of the carbons of clavulanic acid[J]. Journal of the American Chemical Society, 1999, 121(39): 9223-9224.
    [8] THIRKETTLE J E, BALDWIN J E, EDWARDS J, et al. The origin of the β-lactam carbons of clavulanic acid[J]. Chemical Communications, 1997(11): 1025-1026.
    [9] TOWNSEND C A. The role of molecular oxygen in clavulanic acid biosynthesis: Evidence for bacterial oxidative deamination[J]. Journal of the Chemical Society, Chemical Communications, 1988(18): 1234-1236.
    [10] 朱校适, 冯涛, 王永红, 等. 克拉维酸发酵过程变温控制的研究[J]. 中国抗生素杂志, 2008, 33(8): 467-470.
    [11] 蒋顺进, 杨亚勇, 王惠青. 克拉维酸发酵工艺的优化研究[J]. 中国抗生素杂志, 2004, 29(6): 335-337. doi: 10.3969/j.issn.1001-8689.2004.06.005
    [12] SCHMIDT F R. Optimization and scale up of industrial fermentation processes[J]. Applied Microbiology and Biotechnology, 2005, 68(4): 425-435. doi: 10.1007/s00253-005-0003-0
    [13] 王艳萍, 郭金体, 张阳, 等. 无机盐MgCl2和微量金属离子Zn2+对克拉维酸产量的影响[J]. 天津科技大学学报, 2008, 23(1): 13-16. doi: 10.3969/j.issn.1672-6510.2008.01.004
    [14] 朱薇玲. 克拉维酸产生菌的优化培养[J]. 生物技术, 2003, 13(1): 27-28. doi: 10.3969/j.issn.1004-311X.2003.01.019
    [15] 李丹丹, 黄喜桂, 林文良, 等. 棒状链霉菌甘油耐受量与克拉维酸合成的关系[J]. 中国抗生素杂志, 1999, 24(1): 14-15.
    [16] HIGBIE R L. The rate of absorption of a pure gas into a still liquid during short periods of exposure[J]. American Institute of Chemical Engineers, 1935, 35: 365-389.
    [17] DANCKWERTS P V. Significance of liquid-film coefficients in gas absorption[J]. Industrial & Engineering Chemistry, 1951, 43(6): 1460-1467.
    [18] AZIZAN A, BÜCHS J. Three-dimensional (3D) evaluation of liquid distribution in shake flask using an optical fluorescence technique[J]. Journal of Biological Engineering, 2017, 11(1): 28-36. doi: 10.1186/s13036-017-0070-7
    [19] ZHANG H, WILLIAMS-DALSON W, KESHAVARZ-MOORE E, et al. Computational-fluid-dynamics (CFD) analysis of mixing and gas-liquid mass transfer in shake flasks[J]. Biotechnology and Applied Biochemistry, 2005, 41(1): 1-8.
    [20] LI C, XIA J, CHU J, et al. CFD analysis of the turbulent flow in baffled shake flasks[J]. Biochemical Engineering Journal, 2013, 70(15): 140-150. doi: 10.1016/j.bej.2012.10.012
    [21] HORVATH I R, CHATTERJEE S G. A surface renewal model for unsteady-state mass transfer using the generalized Danckwerts age distribution function[J]. Royal Society Open Science, 2018, 5(5): 172423. doi: 10.1098/rsos.172423
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  313
  • HTML全文浏览量:  251
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-03
  • 网络出版日期:  2021-01-25

目录

    /

    返回文章
    返回