高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

基于萘酸酐的水溶性荧光探针:合成以及在细胞成像中的应用

黄存存 晏琦帆

黄存存, 晏琦帆. 基于萘酸酐的水溶性荧光探针:合成以及在细胞成像中的应用[J]. 华东理工大学学报(自然科学版), 2021, 47(5): 569-576. doi: 10.14135/j.cnki.1006-3080.20200731002
引用本文: 黄存存, 晏琦帆. 基于萘酸酐的水溶性荧光探针:合成以及在细胞成像中的应用[J]. 华东理工大学学报(自然科学版), 2021, 47(5): 569-576. doi: 10.14135/j.cnki.1006-3080.20200731002
HUANG Cuncun, YAN Qifan. Naphthalic Anhydride-Based Water-Soluble Fluorescent Probe: Synthesis and Application in Cell Imaging[J]. Journal of East China University of Science and Technology, 2021, 47(5): 569-576. doi: 10.14135/j.cnki.1006-3080.20200731002
Citation: HUANG Cuncun, YAN Qifan. Naphthalic Anhydride-Based Water-Soluble Fluorescent Probe: Synthesis and Application in Cell Imaging[J]. Journal of East China University of Science and Technology, 2021, 47(5): 569-576. doi: 10.14135/j.cnki.1006-3080.20200731002

基于萘酸酐的水溶性荧光探针:合成以及在细胞成像中的应用

doi: 10.14135/j.cnki.1006-3080.20200731002
基金项目: 国家自然科学基金(21602061);北京分子科学国家研究中心开放课题基金(BNLMS201839)
详细信息
    作者简介:

    黄存存(1993—),女,硕士生,研究方向为荧光探针

    通讯作者:

    晏琦帆,E-mail: yanqifan@ecust.edu.cn

  • 中图分类号: O69

Naphthalic Anhydride-Based Water-Soluble Fluorescent Probe: Synthesis and Application in Cell Imaging

  • 摘要: 设计并合成了以螺芴刚性结构为骨架、基于萘酸酐基团的探针分子( 369 )。将萘酰亚胺荧光团转化为萘酸酐荧光团,利用酸酐基团在碱性条件下的水解反应,将萘酸酐基团转化为带电荷的羧酸根进而提高探针分子的水溶性,同时酸酐基团在有机溶剂中的溶解性也有利于探针分子的分离纯化过程。随着水溶液pH值的增大,探针分子的吸收光谱起峰蓝移,探针溶解性增加,表明探针的萘酸酐基团已经向羧酸根转变。探针分子 369 在细胞成像中皆成功染色,有效消除了背景信号干扰问题,说明通过将萘酰亚胺转化为萘酸酐提高了现有荧光团的水溶性。

     

  • 图  1  化合物369的合成路线

    Figure  1.  Synthetic routes of compounds 36 and 9

    图  2  化合物369在二甲基亚砜中的紫外-可见吸收光谱(a)和荧光发射光谱(b)

    Figure  2.  UV-vis absorption spectra (a) and fluorescence emission spectra (b) of compounds 3, 6, 9 in dimethyl sulfoxide

    图  3  (a)化合物3在不同pH下的紫外-可见吸收曲线;(b)化合物3在不同pH下A365/A472的比值;化合物369在水中(c)和在PBS缓冲溶液中(d)的紫外-可见吸收光谱

    Figure  3.  (a) UV-Vis absorption spectra of compound 3 at different pH; (b)A365 / A472 ratio at different pH of compound 3; Normalized UV-Vis absorption spectra of compound 3, 6, 9 in water (c) and in PBS buffer solution (d)

    图  4  化合物369对Hela细胞的共聚焦成像

    Figure  4.  Confocal imaging of Hela cells with compound 3, 6 and 9

    表  1  化合物369在二甲基亚砜中的紫外-可见吸收光谱和荧光发射光谱的表征数据

    Table  1.   UV-vis absorption and fluorescence emission characterization data of compounds 3, 6, 9 in dimethyl sulfoxide

    CompoundUV-vis absorptionFluorescence emission
    λmax/nmε/[105 L·mol−1·cm−1]λemi /nmλex /nmΦ
    34410.145194310.51
    63560.284403460.07
    93820.535043720.23
    λ—Absorption wave length; ε—Extinction coefficient; Φ—Quantum fluorescence yield
    下载: 导出CSV
  • [1] DEAN K M, PALMER A E. Advances in fluorescence labeling strategies for dynamic cellular imaging[J]. Nature Chemical Biology, 2014, 10: 512-523. doi: 10.1038/nchembio.1556
    [2] SALIPALLI S, SINGH P K, BORLAK J. Recent advances in live cell imaging of hepatoma cells[J]. BMC Cell Biology, 2014, 15:26. doi:10.1186/1471-2121-15-26.
    [3] BAKER M. Cellular imaging: Taking a long, hard look[J]. Nature, 2010, 466(7310): 1137-1140. doi: 10.1038/4661137a
    [4] GAO M, YU F, LV C, et al. Fluorescent chemical probes for accurate tumor diagnosis and targeting therapy[J]. Chemical Society Reviews, 2017, 46(8): 2237-2271. doi: 10.1039/C6CS00908E
    [5] LAVIS L D, RAINES R T. Bright ideas for chemical biology[J]. Acs Chemical Biology, 2008, 3(3): 142-155. doi: 10.1021/cb700248m
    [6] WYSOCKI L M, LAVIS L D. Advances in the chemistry of small molecule fluorescent probes[J]. Current Opinion in Chemical Biology, 2011, 15(6): 752-759. doi: 10.1016/j.cbpa.2011.10.013
    [7] JENSEN ELLEN C. Use of fluorescent probes: Their effect on cell biology and limitations[J]. Anatomical Record Advances in Integrative Anatomy & Evolutionary Biology, 2012, 295(12): 2031-2036.
    [8] JYOTI K. JAISWAL, SANFORD M S. Potentials and pitfalls of fluorescent quantum dots for biological imaging[J]. Trends in Cell Biology, 2004, 14(9): 497-504. doi: 10.1016/j.tcb.2004.07.012
    [9] DUKE R M, VEALE E B, PFEFFER F M, et al. Colorimetric and fluorescent anion sensors: An overview of recent developments in the use of 1, 8-naphthalimide-based chemosensors[J]. Chemical Society Reviews, 2010, 39(10): 3936-3953. doi: 10.1039/b910560n
    [10] KAURR P, SINGH K. Recent advances in the application of BODIPY in bioimaging and chemosensing[J]. Journal of Materials Chemistry C, 2019, 7(37): 11361-11405. doi: 10.1039/C9TC03719E
    [11] TINGRASSIA L, LEFRANC F, KISS R, et al. Naphthalimides and azonafides as promising anti-cancer agents[J]. Current Medicinal Chemistry, 2009, 16(10): 1192-1213. doi: 10.2174/092986709787846659
    [12] GOSZTOLA D, NIEMCZYK M P, SVEC W, et al. Excited doublet states of electrochemically generated aromatic imide and diimide radical anions[J]. Journal of Physical Chemistry A, 2000, 104(28): 6545-6551. doi: 10.1021/jp000706f
    [13] XIONG X, SONG F, PENG X J, et al. Thermally activated delayed fluorescence of fluorescein derivative for time-resolved and confocal fluorescence imaging[J]. Journal of the American Chemical Society, 2014, 136(27): 9590-9597. doi: 10.1021/ja502292p
    [14] ZHANG J, WANG Q, GUO Z, et al. High-fidelity trapping of spatial-temporal mitochondria with rational design of aggregation-induced emission probes[J].Advanced Functional Materials,2019, 29(16):1808153. doi: 10.1002/adfm.201808153.
    [15] NI F, ZHU Z, TONG X, YANG C L, et al. Organic emitter integrating aggregation-induced delayed fluorescence and room-temperature phosphorescence characteristics, and its application in time-resolved luminescence imaging[J]. Chemical Science, 2018, 9: 6150-6155. doi: 10.1039/C8SC01485J
    [16] 周颖. 基于分子内弱相互作用调控热活化延迟荧光的研究[D]. 上海: 华东理工大学, 2018.
    [17] LIU Y, MA H, ZHANG L, et al. A small molecule probe reveals declined mitochondrial thioredoxin reductase activity in a Parkinson's disease model[J]. Chemical Communications, 2016, 52(11): 2296-2299. doi: 10.1039/C5CC09998F
    [18] CHEN L, SUN W, LI J, et al. The first ratiometric fluorescent probes for aminopeptidase N cell imaging[J]. Organic & Biomolecular Chemistry, 2013, 11(2): 378-382.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  887
  • HTML全文浏览量:  694
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-31
  • 网络出版日期:  2020-10-26
  • 刊出日期:  2021-10-11

目录

    /

    返回文章
    返回