高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

瞬时纳米制备技术在高效、经济制备纳米农药中的运用

邵川华 朱正曦

邵川华, 朱正曦. 瞬时纳米制备技术在高效、经济制备纳米农药中的运用[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20200724001
引用本文: 邵川华, 朱正曦. 瞬时纳米制备技术在高效、经济制备纳米农药中的运用[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20200724001
SHAO Chuanhua, ZHU Zhengxi. Efficient and Economical Production of Nanopesticides via Flash Nanoformation Technology[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20200724001
Citation: SHAO Chuanhua, ZHU Zhengxi. Efficient and Economical Production of Nanopesticides via Flash Nanoformation Technology[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20200724001

瞬时纳米制备技术在高效、经济制备纳米农药中的运用

doi: 10.14135/j.cnki.1006-3080.20200724001
基金项目: 扬州市市校合作项目(YZ2019127);新疆生产建设兵团材料化工研究项目(2018BTRC003);扬州大学培育基金(2019CXJ025);江苏高校品牌专业建设工程二期;江苏省优势学科项目
详细信息
    作者简介:

    邵川华(1997-),男,江苏常州人,硕士生,主要研究方向为纳米水分散体系的制备。E-mail:3288615504@qq.com

    通讯作者:

    朱正曦,E-mail:zhuzx@yzu.edu.cn

  • 中图分类号: S-1

Efficient and Economical Production of Nanopesticides via Flash Nanoformation Technology

  • 摘要: 纳米农药因粒径小、药力高、分散性好等优势,受到人们的日益青睐。然而,受制于现有的农药制剂技术,纳米农药工业化制备的成本普遍较高,尚未能在以量换利的农药领域获得较好应用。近年来,在国家有关农药减施增效的政策引导下,纳米农药的应用刻不容缓。本综述介绍一种高效制备具有超高负载量的纳米水分散体系的新技术−瞬时纳米制备(flash nanoformation, FNF)技术,该技术可实现纳米农药的快速、大量、经济制备。

     

  • 图  1  通过FNP法快速射流撞击共混及纳米颗粒瞬时形成的过程演化示意图(获得文献[19]允许改编后重新印刷,美国化学会版权所有2014)

    Figure  1.  Schematic diagram of physical process of nanoparticle formation by impinging jet mixing and flash nanoprecipitation (Adapted with permission from literature [19], Copyright 2014 American Chemical Society)

    图  2  RFNP法制备纳米颗粒过程图(获得文献[9]允许重新印刷,美国化学会版权所有2007)

    Figure  2.  Process of nanoparticle formation by RFNP (Reprinted with permission from literature [9], Copyright 2007 American Chemical Society)

    图  3  FNP法所制备的纳米颗粒抗菌剂用于小番茄的抗菌[40]

    Figure  3.  Preparation of fungicide nanoparticles via FNP for treating with cherry tomatoes[40]

    图  4  通过FNP制备PEG-b-PLA稳定的纳米λ-三氟氯氰菊酯水悬浮剂(获得文献[31]允许重新印刷,美国化学会版权所有2018)

    Figure  4.  Preparation of PEG-b-PLA stabilized λ-cyhalothrin nanosuspension via FNP (Reprinted with permission from literature [31], Copyright 2018 American Chemical Society)

    图  5  通过FNP法制备由PEG-b-PLGA, PEG-b-PLA和PEG-b-PCL分别稳定的纳米阿维菌素水悬浮剂[32]

    Figure  5.  Preparation of PEG-b-PLGA, PEG-b-PLA or PEG-b-PCL stabilized abamectin nanosuspension via FNP[32]

    表  1  传统农药剂型及其特点

    Table  1.   Conventional dosage forms of pesticides and their characteristics

    Pesticide formCharacteristics
    Aqueous solutions,ASMajor loss after usage, short effective period, and frequent applications
    Dustpowder,DPEasy to cause dust pollution and excessive application
    Fumicants,FUEasy to cause dust pollution and untargeted anemochory spread
    Granule,GGLow active and high additive contents
    Emulsifiable concentrate,ECHigh content of organic solvent, high cost, and high toxicity
    Suspending concentrate,SCWater as dispersing medium lowering toxicity, odor, and volatility
    Emulsifiable water,EWWater as dispersing medium lowering toxicity, odor, and volatility
    下载: 导出CSV

    表  2  各种有机化合物的δ及ACD log P值与纳米颗粒稳定性的相关性(获得文献[19]允许改编后重新印刷,美国化学会版权所有2014)

    Table  2.   δ and ACDlogP of various organic compounds against nanoparticle stability (Adapted with permission from literature [19], Copyright 2014 American Chemical Society)

    Organic compoundδ/ (MPa1/2)a)ACD log PStability
    Hydrocortisone23.21.43±0.47No particle
    Odanacatib29.72.92±0.85No
    Curcumin22.82.92±0.48No
    Itraconazol19.14.35±1.22No
    Hydrocortisone ethoxysilicate21.26.37±0.72No
    Paclitaxel22.37.38±0.83No
    Betulin18.79.01±0.39No
    Vitamin E succinate18.511.88±0.30Yes
    Paclitaxel 2’-triethoxysilicate21.413.09±1.00Yes
    Paclitaxel 2’-trii-propoxysilicate21.014.13±1.01Yes
    β-Carotene17.815.51±0.43Yes
    Paclitaxel 2’,7-bis(triethoxysilicate)20.818.36±1.15Yes
    Tetramenthoxysilane16.718.66±0.66Yes
    a) Estimated with the Hoye method as well as assumed to treat the Si atom as a C atom
    下载: 导出CSV
  • [1] JOSE V J, SEVILLA-MOR N B, LOPEZ-GOTI C, et al. An Overview of Nanopesticides in the Framework of European Legislation[M]. Grumezescu A M. New Pesticides and Soil Sensors, [s.l.]: Academic Press, 2017.
    [2] AMENTA V, ASCHBERGER K, ARENA M, et al. Regulatory aspects of nanotechnology in the agri/feed/food sector in eu and non-eu countries[J]. Regulatory Toxicology and Pharmacology, 2015, 73(1): 463-476. doi: 10.1016/j.yrtph.2015.06.016
    [3] MITTER N, HUSSEY K. Moving policy and regulation forward for nanotechnology applications in agriculture[J]. Nature Nanotechnology, 2019, 14(6): 508-510. doi: 10.1038/s41565-019-0464-4
    [4] ZHAO X, CUI H, WANG Y, et al. Development strategies and prospects of nano-based smart pesticide formulation[J]. Journal of Agricultural and Food Chemistry, 2018, 66(26): 6504-6512. doi: 10.1021/acs.jafc.7b02004
    [5] 朱正曦. 胶体材料的瞬时纳米制备技术[C]// 中国化学会第30届学术年会, 辽宁大连: [s.n.]. 2016.
    [6] JOHNSON B K, PRUD'HOMME R K. Process and apparatuses for preparing nanoparticle compositions with amphiphilic copolymers and their use: US2004/0091546[P]. 2002.
    [7] JOHNSON B K, PRUD'HOMME R K. Flash nanoprecipitation of organic actives and block copolymers using a confined impinging jets mixer[J]. Australian Journal of Chemistry, 2003, 56(10): 1021-1024. doi: 10.1071/CH03115
    [8] 朱正曦, 徐旭. 一种快速制备纳米乳液的方法: ZL2015105158105[P]. 2015.
    [9] ZHU Z X, ANACKER J L, JI S, et al. Formation of block copolymer-protected nanoparticles via reactive impingement mixing[J]. Langmuir, 2007, 23(21): 10499-10504. doi: 10.1021/la701420z
    [10] ZHU Z X, XU P, FAN G, et al. Fast synthesis and separation of nanoparticles via in-situ reactive flash nanoprecipitation and pH tuning[J]. Chemical Engineering Journal, 2019, 356: 877-885. doi: 10.1016/j.cej.2018.09.103
    [11] ZHU Z X, WANG X X. Simulations on time scales and conversion of fast competing reactions in rapid mixing[J]. Chemical Engineering Journal, 2018, 336: 741-747. doi: 10.1016/j.cej.2017.11.179
    [12] ZHU Z X. Polymer stabilized nanosuspensions formed via flash nanoprecipitation: Nanoparticle formation, formulation, and stability[D]. Minnesota, USA: University of Minnesota, 2016.
    [13] JOHNSON B K, PRUD'HOMME R K. Chemical processing and micromixing in confined impinging jets[J]. AIChE Journal, 2003, 49(9): 2264-2282. doi: 10.1002/aic.690490905
    [14] LIU Y, CHENG C, PRUD'HOMME R K, et al. Mixing in a multi-inlet vortex mixer (mivm) for flash nano-precipitation[J]. Chemical Engineering Science, 2008, 63(11): 2829-2842. doi: 10.1016/j.ces.2007.10.020
    [15] HAN J, ZHU Z, QIAN H, et al. A simple confined impingement jets mixer for flash nanoprecipitation[J]. Journal of Pharmaceutical Sciences, 2012, 101(10): 4018-4023. doi: 10.1002/jps.23259
    [16] 王晓晓, 瞬时纳米制备技术的连续化研究[D]. 江苏扬州: 扬州大学, 2018.
    [17] 朱正曦, 王晓晓. 一种快速、大量、连续生产纳米乳液或纳米悬浮液的装置及方法: ZL201610763518X[P]. 2016.
    [18] 朱正曦, 王晓晓. 一种纳米级分散液的制备方法与装置: ZL2018106948379[P]. 2018.
    [19] ZHU Z X. Flash nanoprecipitation: Prediction and enhancement of particle stability via drug structure[J]. Molecular Pharmaceutics, 2014, 11(3): 776-786. doi: 10.1021/mp500025e
    [20] ZHU Z X. Effects of amphiphilic diblock copolymer on drug nanoparticle formation and stability[J]. Biomaterials, 2013, 34(38): 10238-10248. doi: 10.1016/j.biomaterials.2013.09.015
    [21] ZHU Z X, MARGULIS-GOSHEN K, MAGDASSI S, et al. Polyelectrolyte stabilized drug nanoparticles via flash nanoprecipitation: A model study with beta-carotene[J]. Journal of Pharmaceutical Sciences, 2010, 99(10): 4295-4306. doi: 10.1002/jps.22090
    [22] GINDY M E, PANAGIOTOPOULOS A Z, PRUD'HOMME R K. Composite block copolymer stabilized nanoparticles: Simultaneous encapsulation of organic actives and inorganic nanostructures[J]. Langmuir, 2008, 24(1): 83-90. doi: 10.1021/la702902b
    [23] SHAN J, BUDIJONO S J, HU G, et al. Pegylated composite nanoparticles containing upconverting phosphors and meso-tetraphenyl porphine (TPP) for photodynamic therapy[J]. Advanced Functional Materials, 2011, 21(13): 2488-2495. doi: 10.1002/adfm.201002516
    [24] SHI L, SHAN J, JU Y, et al. Nanoparticles as delivery vehicles for sunscreen agents[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 396: 122-129.
    [25] WANG M, YANG N, GUO Z, et al. Facile preparation of aie-active fluorescent nanoparticles through flash nanoprecipitation[J]. Industrial & Engineering Chemistry Research, 2015, 54(17): 4683-4688.
    [26] LIU R, SOSA C, YEH Y W, et al. A one-step and scalable production route to metal nanocatalyst supported polymer nanospheres via flash nanoprecipitation[J]. Journal of Materials Chemistry A, 2014, 2(41): 17286-17290. doi: 10.1039/C4TA04036H
    [27] JI S, ZHU Z X, HOYE T R, et al. Maleimide functionalized poly(epsilon-caprolactone)-block-poly(ethylene glycol) (PCL-PEG-MAL): Synthesis, nanoparticle formation, and thiol conjugation[J]. Macromolecular Chemistry and Physics, 2009, 210(10): 823-831. doi: 10.1002/macp.200900025
    [28] CHOW S F, WAN K Y, CHENG K K, et al. Development of highly stabilized curcumin nanoparticles by flash nanoprecipitation and lyophilization[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94: 436-449. doi: 10.1016/j.ejpb.2015.06.022
    [29] 刘靖康, 李猛, 王铭纬, 等. 基于瞬时纳米沉淀法的球形纳米粒子电荷及粒径调控[J]. 华东理工大学学报(自然科学版), 2020, 46(3): 334-340.
    [30] LI K K, ZHANG X, HUANG Q, et al. Continuous preparation of zein colloidal particles by flash nanoprecipitation (FNP)[J]. Journal of Food Engineering, 2014, 127: 103-110. doi: 10.1016/j.jfoodeng.2013.12.001
    [31] CHEN K, FU Z, WANG M, et al. Preparation and characterization of size-controlled nanoparticles for high-loading lambda-cyhalothrin delivery through flash nanoprecipitation[J]. Journal of Agricultural and Food Chemistry, 2018, 66(31): 8246-8252. doi: 10.1021/acs.jafc.8b02851
    [32] FU Z N, CHEN K, LI L, et al. Spherical and spindle-like abamectin-loaded nanoparticles by flash nanoprecipitation for southern root-knot nematode control: Preparation and characterization[J]. Nanomaterials, 2018, 8(6): 449. doi: 10.3390/nano8060449.
    [33] 徐旭. 纳米水分散体系的瞬时纳米制备研究及技术应用[D]. 江苏扬州: 扬州大学, 2017.
    [34] 朱正曦, 徐旭. 环境友好型基础油纳米级稳定乳液及其制备方法: ZL2017104477117[P]. 2017.
    [35] 朱正曦, 曹淑言. 一种含松油醇类化合物的清洁剂及其制备方法: ZL2017107018917[P]. 2017.
    [36] 朱正曦, 郭彦麟, 邵川华. 一种高效安全除虫菊素纳米水乳液及其制备方法: CN2017105259571[P]. 2017.
    [37] PINKERTON N M, GRANDEURY A, FISCH A, et al. Formation of stable nanocarriers by in situ ion pairing during block-copolymer-directed rapid precipitation[J]. Molecular Pharmaceutics, 2013, 10(1): 319-328. doi: 10.1021/mp300452g
    [38] SANTOS J L, REN Y, VANDERMARK J, et al. Continuous production of discrete plasmid DNA-polycation nanoparticles using flash nanocomplexation[J]. Small, 2016, 12(45): 6214-6222. doi: 10.1002/smll.201601425
    [39] RODRIGUES E T, LOPES I, PARDAL M A. Occurrence, fate and effects of azoxystrobin in aquatic ecosystems: A review[J]. Environment International, 2013, 53: 18-28. doi: 10.1016/j.envint.2012.12.005
    [40] 朱正曦, 邵川华, 郭彦麟. 一种粒径小于100 nm的嘧菌酯水悬浮剂及其制备方法: ZL2017104622074[P]. 2017.
    [41] ZHU Z X, SHAO C H, GUO Y L, et al. Facile patlway to generate agrochemical nanosuspensions integrating super-high load, eco-friendly excipients, intensified preparation process, and enhanced potency[J]. Nano Research, 2021, 14(7): 2179–2187.
    [42] 程暄生, 赵平, 于涌. 天然除虫菊[J]. 农药, 2005, 44(9): 10-13.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  981
  • HTML全文浏览量:  793
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-24
  • 网络出版日期:  2020-10-09

目录

    /

    返回文章
    返回