高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

磁性金属离子对羧甲基纤维素钠分散碳纳米管浆料性能的影响

李博妍 公维光 景希玮 郑柏存

李博妍, 公维光, 景希玮, 郑柏存. 磁性金属离子对羧甲基纤维素钠分散碳纳米管浆料性能的影响[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20200614001
引用本文: 李博妍, 公维光, 景希玮, 郑柏存. 磁性金属离子对羧甲基纤维素钠分散碳纳米管浆料性能的影响[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20200614001
LI Boyan, GONG Weiguang, JING Xiwei, ZHENG Baicun. Effect of Magnetic Metal Ions on Properties of Carbon Nanotube Slurry Dispersed by Sodium Carboxymethylcellulose[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20200614001
Citation: LI Boyan, GONG Weiguang, JING Xiwei, ZHENG Baicun. Effect of Magnetic Metal Ions on Properties of Carbon Nanotube Slurry Dispersed by Sodium Carboxymethylcellulose[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20200614001

磁性金属离子对羧甲基纤维素钠分散碳纳米管浆料性能的影响

doi: 10.14135/j.cnki.1006-3080.20200614001
详细信息
    作者简介:

    李博妍(1995—),女,陕西西安人,硕士生,主要研究方向为纳米材料表面修饰及应用。E-mail:Boyannlee@163.com

    通讯作者:

    公维光,E-mail:gongwg@ecust.edu.cn

  • 中图分类号: O641~O649

Effect of Magnetic Metal Ions on Properties of Carbon Nanotube Slurry Dispersed by Sodium Carboxymethylcellulose

  • 摘要: 多壁碳纳米管(MWNTs)制备过程中残留的磁性金属催化剂可能对其在溶剂中的分散产生影响。本文通过将MWNTs分别分散到含有同一浓度金属离子(Fe3+,Fe2+,Ni2+,Co2+)的羧甲基纤维素钠(CMC)溶液中,制备了一系列MWNTs浆料。并系统性地探究了浆料的吸附量、拉曼光谱、zeta电位和吸附构象。结果表明,CMC/MWNTs浆料的分散稳定性按照Fe2+、Co2+、Ni2+、Fe3+的顺序依次降低。CMC在MWNTs表面的吸附量与吸附构象受CMC与金属离子之间螯合反应的控制,这决定了CMC/MWNTs体系的分散和稳定性。含有二价离子的浆料中,CMC能够形成一层均匀的膜,覆盖在MWNTs表面,CMC吸附量最大,MWNTs表面zeta电位最大,表现出较好的分散稳定性。

     

  • 图  1  金属离子对MWNTs浆料吸光度的影响

    Figure  1.  Effect of different kinds of ions on the absorbance of MWNTs suspensions by UV-Vis spectroscopy

    图  2  金属离子对MWNTs浆料粒径分布的影响

    Figure  2.  Particle size distributions of MWNTs dispersed with CMC with different ions

    图  3  不同金属离子存在条件下MWNTs浆料的流变曲线(a)流变行为曲线;(b)宾汉模型拟合

    Figure  3.  Rheological curves of MWCNTs slurry modified by CMC with different ions. a) relative viscosity; b) Herschel-Bulkley model fitting

    图  4  不同金属离子对MWNTs浆料吸光度随时间变化的影响

    Figure  4.  Absorbance curves with different resting days

    图  5  金属离子-CMC螯合物的紫外吸收光谱图

    Figure  5.  UV-vis curves of ions-CMC chelates

    图  6  不同金属离子存在条件下CMC/MWNTs的热重分析

    Figure  6.  Weight lose curves of CMC/MWNTs with different ions

    图  7  不同金属离子存在条件下CMC/MWNTs的拉曼光谱

    Figure  7.  Raman spectra of CMC/MWNTs with different ions

    图  8  不同金属离子对MWNTs浆料zeta电位的影响

    Figure  8.  Zeta potential of MWNTs suspensions with different ions

    图  9  金属离子对MWNTs微观形貌的形象

    Figure  9.  TEM images of MWNTs with different ions

    表  1  不同金属离子存在条件下MWNTs浆料的流变模型拟合参数

    Table  1.   Parameters for rheological models of MWNTs suspensions

    SuspensionsParameter
    τyKnr2
    CMC/MWNTs11.1841.6620.5650.999
    Fe3/MWNTs40.7500.7790.7010.999
    Fe2/MWNTs31.0291.0450.6561.000
    Co/MWNTs21.4781.2760.5691.000
    Ni/MWNTs26.8461.3030.5701.000
    下载: 导出CSV

    表  2  金属离子与CMC螯合物的UV-vis最大吸收波长与最大吸收峰值

    Table  2.   ABS and λmax of uv-vis for ions-CMC chelates

    Ionλmax/nmAbsorption
    Fe3+2080.813
    Fe2+2040.263
    Co2+2020.410
    Ni2+2020.447
    下载: 导出CSV
  • [1] IIJIMA S. Carbon nanotubes: past, present, and future[J]. Physica B: Condensed Matter, 2002, 323(1/4): 1-5. doi: 10.1016/S0921-4526(02)00869-4
    [2] KIM G M, NAEEM F, KIM H K, et al. Heating and heat-dependent mechanical characteristics of CNT-embedded cementitious composites[J]. Compos Struct, 2016, 136: 162-170. doi: 10.1016/j.compstruct.2015.10.010
    [3] CHEN J, ZHANG ZX, HUANG WB, et al. Carbon nanotube network structure induced strain sensitivity and shape memory behavior changes of thermoplastic polyurethane[J]. Materials & Design, 2015, 69: 105-113.
    [4] HEMMAT E M, SAEDODIN S, YAN W M, et al. Study on thermal conductivity of water-based nanofluids with hybrid suspensions of CNTs/Al2O3 nanoparticles[J]. Journal Of Thermal Analysis And Calorimetry, 2015, 124(1): 455-460.
    [5] LU W B, WU J, SONG J, et al. A cohesive law for interfaces between multi-wall carbon nanotubes and polymers due to the van der Waals interactions[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(41/42): 3261-3267. doi: 10.1016/j.cma.2007.12.008
    [6] BASKARAN D, MAYS J W, BRATCHER M S. Noncovalent and nonspecific molecular interactions of polymers with multiwalled carbon nanotubes[J]. Chemistry of Materials, 2005, 17(13): 3389-3397. doi: 10.1021/cm047866e
    [7] POYEKAR A V, BHATTACHARYYA A R, PANWAR A S, et al. Influence of noncovalent modification on dispersion state of multiwalled carbon nanotubes in melt-mixed immiscible polymer blends[J]. Acs Applied Materials & Interfaces, 2014, 6(14): 11054-11067.
    [8] 尚旭, 景希玮, 徐健, 等. 不同分子量聚乙烯吡咯烷酮对多壁碳纳米管分散性能的影响[J]. 华东理工大学学报(自然科学版), 2019, 45(6): 1-8.
    [9] TAKAHASHI T, TSUNODA K, YAJIMA H, et al. Dispersion and purification of single-wall carbon nanotubes using carboxymethylcellulose[J]. Janpanese Journal of Applied Physics, 2004, 43(6A): 3636-3639. doi: 10.1143/JJAP.43.3636
    [10] MINAMI N, KIM Y, MIYASHITA K, et al. Cellulose derivatives as excellent dispersants for single-wall carbon nanotubes as demonstrated by absorption and photoluminescence spectroscopy[J]. Applied Physics Letters, 2006, 88(9): 093123. doi: 10.1063/1.2180870
    [11] YANG Q, PAN X J, HUANG F, et al. Fabrication of high-concentration and stable aqueous suspensions of graphene nanosheets by noncovalent functionalization with lignin and cellulose derivatives[J]. Journal of Physical Chemistry C, 2010, 114(9): 3811-3816. doi: 10.1021/jp910232x
    [12] RIOU I, BERTONCINI P, BIZOT H, et al. Carboxymethylcellulose/single walled carbon nanotube complexes[J]. Journal of Nanoscience and Nanotechnology, 2009, 9(10): 6176-80. doi: 10.1166/jnn.2009.1573
    [13] HOYOS-PALACIO L M, GARCÍA A G, PÉREZ-ROBLES J F, et al. Catalytic effect of Fe, Ni, Co and Mo on the CNTs production[J]. IOP Conference Series: Materials Science and Engineering, 2014, 59: 012005.
    [14] RAUSCH J, ZHUANG RC, M?DER E. Surfactant assisted dispersion of functionalized multi-walled carbon nanotubes in aqueous media[J]. Composites Part A Applied Science & Manufacturing, 2010, 41(9): 1038-1046.
    [15] JING X W, GONG W G, FENG Z J, et al. Synthesis of a novel comb-like copolymer used as dispersant in organic solvent and influence of free comb-like copolymer on CaCO3 suspension[J]. Journal of Dispersion Science and Technology, 2017, 38(7): 1003-1010. doi: 10.1080/01932691.2016.1217491
    [16] TONG K, SONG X, XIAO G, et al. Colloidal processing of Mg(OH)(2) aqueous suspensions using sodium polyacrylate as dispersant[J]. Industrial & Engineering Chemistry Research, 2014, 53(12): 4755-4762.
    [17] MINAKOV A V, RUDYAK V Y, PRYAZHNIKOV M I. Rheological behavior of water and ethylene glycol based nanofluids containing oxide nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 554: 279-285. doi: 10.1016/j.colsurfa.2018.06.051
    [18] 冯颖, 王珏程, 郑龙行, 等. 羧甲基纤维素钠螯合Cu(Ⅱ)的稳定常数测定及螯合效果分析[J]. 化工学报, 2015, 66(11): 213-220.
    [19] SUN S, WANG A. Adsorption kinetics of Cu(Ⅱ) ions using N, O-carboxymethyl-chitosan[J]. Journal of Hazardous Materials, 2006, 131(1/3): 103-111.
    [20] LI M M, WU Z P, ZHAO M, et al. Preparation of homogeneously dispersed and highly concentrated double-walled carbon nanotubes as catalyst support[J]. Rare Metals, 2015, 35(4): 337-343.
    [21] LEHMAN J H, TERRONES M, MANSFIELD E, et al. Evaluating the characteristics of multiwall carbon nanotubes[J]. Carbon, 2011, 49(8): 2581-2602. doi: 10.1016/j.carbon.2011.03.028
    [22] NASIRI A, SHARIATY-NIASAR M, RASHIDI A M, et al. Effect of CNT structures on thermal conductivity and stability of nanofluid[J]. International Journal of Heat and Mass Transfer, 2012, 55(5/6): 1529-1535.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1207
  • HTML全文浏览量:  574
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-14
  • 修回日期:  2020-12-04
  • 网络出版日期:  2021-01-07

目录

    /

    返回文章
    返回