高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

亚音速喷流出口扰动对湍流与声场模拟的影响

许聪 刘琪麟 赖焕新

许聪, 刘琪麟, 赖焕新. 亚音速喷流出口扰动对湍流与声场模拟的影响[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20200603001
引用本文: 许聪, 刘琪麟, 赖焕新. 亚音速喷流出口扰动对湍流与声场模拟的影响[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20200603001
XU Cong, LIU Qilin, LAI Huanxin. Effects of Flow Forcing on Simulation of Subsonic Turbulent Jet Flow and Noise[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20200603001
Citation: XU Cong, LIU Qilin, LAI Huanxin. Effects of Flow Forcing on Simulation of Subsonic Turbulent Jet Flow and Noise[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20200603001

亚音速喷流出口扰动对湍流与声场模拟的影响

doi: 10.14135/j.cnki.1006-3080.20200603001
基金项目: 国家自然科学基金(51976061)
详细信息
    作者简介:

    许聪:许 聪(1995—),女,河南人,博士研究生,主要从事气动声学研究。Email:xc_201309@126.com

    通讯作者:

    赖焕新,Email:hlai@ecust.edu.cn

  • 中图分类号: V211

Effects of Flow Forcing on Simulation of Subsonic Turbulent Jet Flow and Noise

  • 摘要: 采用大涡模拟方法计算出口马赫数Ma=0.75、雷诺数ReD=8.7×105的圆口喷射流动,研究本文改进的来流多模态线性不稳定扰动和涡环扰动对促成转捩、湍流特性以及远声场结果的影响。研究结果表明,与来流无扰动的情况相比,两种扰动方式均有利于破坏喷口环状涡的周向稳定性,从而加速剪切层转捩,逼近实际喷口的湍流状态;且多模态线性不稳定扰动工况的喷口速度脉动水平高于涡环扰动下的喷流,能更早地触发转捩。从远声场的结果来看,两种扰动方法有效地减少了计算模型中因转捩和涡配对而导致的低频噪声误差,从而吻合实验数据。

     

  • 图  1  计算域及测点示意图

    Figure  1.  Computational domain and measuring point positions

    图  2  中心线速度轴向分布

    Figure  2.  Axial velocity along centerline

    图  3  轴向速度径向分布.图中从左至右位置x/Dj分别为1, 2.5和5. 线形含义同图2

    Figure  3.  Radial profiles of axial velocity at x/Dj=1, 2.5 and 5. Legends are the same as in Fig.2

    图  4  剪切层半值宽

    Figure  4.  Jet half width

    图  5  xy平面涡量分布

    Figure  5.  Instantaneous vorticity magnitude in the planes xy

    图  6  x/Dj=2截面涡量分布

    Figure  6.  Instantaneous vorticity magnitudein the planes x/Dj=2

    图  7  tUj/Dj=350时刻Q判据等值面

    Figure  7.  Iso-surface of Q-criterion at non-dimensional time tUj/Dj =350

    图  8  中心线上脉动速度分布

    Figure  8.  Fluctuating velocity along jet centerline

    图  9  脉动速度径向分布. 图中从左至右位置x/Dj分别为1, 2.5和5.线形含义同图8

    Figure  9.  Radial profiles of fluctuating velocity at x/Dj=1, 2.5 and 5. Legends are the same as in Fig.8

    图  10  唇线上脉动速度分布

    Figure  10.  Fluctuating velocity along jet lipline

    图  11  唇线上轴向脉动频谱

    Figure  11.  PSD of axial velocity fluctuation along jet lipline

    图  12  唇线上径向脉动频谱

    Figure  12.  PSD of radial velocity fluctuation along jet lipline

    图  13  r=30Dj测点总声压级

    Figure  13.  Far-field OASPL at r=30Dj

    图  14  r=50Dj测点总声压级.线型含义同图13

    Figure  14.  Far-field OASPL at r=50Dj. Legends are the same as in Fig.13

    图  15  r=30Dj测点总声压级

    Figure  15.  Far-field acoustic spectra at r=30Dj

    图  16  r=50Dj测点总声压级.线型含义同图15

    Figure  16.  Far-field acoustic spectra at r=50 Dj. Legends are the same as in Fig.15

    表  1  势流核长度

    Table  1.   Location of the end of the potential core

    Case Lc/Dj
    nopert 4.75
    pert1 5.52
    pert2 5.38
    LES.ref[16] 5.5
    EXP.ref[17] 6.5
    下载: 导出CSV
  • [1] DUTTON J C, ELLIOTT G S, KIM K. Compressible mixing layer experiments for CFD validation[C]//AIAA Aviation 2019 Forum. Dallas: American Institute of Aeronautics and Astronautics, 2019: 2847.
    [2] BOGEY C, SABATINI R. Effects of nozzle-exit boundary-layer profile on the initial shear-layer instability, flow field and noise of subsonic jets[J]. Journal of Fluid Mechanics, 2019, 876: 288-325. doi: 10.1017/jfm.2019.546
    [3] BOGEY C, MARSDEN O, BAILLY C. Influence of initial turbulence level on the flow and sound fields of a subsonic jet at a diameter-based Reynolds number of 10(5)[J]. Journal of Fluid Mechanics, 2012, 701: 352-85. doi: 10.1017/jfm.2012.162
    [4] BRES G A, JAUNET V, LE RALLIC M, et al. Large eddy simulation for jet noise: The importance of getting the boundary layer right[C]//21st AIAA/CEAS aeroacoustics conference. Dallas: American Institute of Aeronautics and Astronautics, 2015: 2535.
    [5] ZAMAN K. Effect of initial boundary-layer state on subsonic jet noise[J]. AIAA Journal, 2012, 50(8): 1784-1795. doi: 10.2514/1.J051712
    [6] POUANGUÉ A F, SANJOSÉ M, MOREAU S, et al. Subsonic jet noise simulations using both structured and unstructured grids[J]. AIAA Journal, 2015, 53(1): 55-69. doi: 10.2514/1.J052380
    [7] 施智晓, 赖焕新. 使用喷管内壁盲孔控制亚音速喷流噪声[J]. 华东理工大学学报(自然科学版), 2018, 44(5): 775-782.
    [8] BRES G A, JORDAN P, JAUNET V, et al. Importance of the nozzle-exit boundary-layer state in subsonic turbulent jets[J]. Journal of Fluid Mechanics, 2018, 851: 83-124. doi: 10.1017/jfm.2018.476
    [9] STANLEY S A, SARKAR S. Influence of nozzle conditions and discrete forcing on turbulent planar jets[J]. AIAA Journal, 2000, 38(9): 1615-1623. doi: 10.2514/2.1144
    [10] SAGAUT P, GARNIER E, TROMEUR E, et al. Turbulent inflow conditions for large-eddy-simulation of compressible wall-bounded flows[J]. AIAA Journal, 2004, 42(3): 469-477. doi: 10.2514/1.3461
    [11] HU Z W, MORFEY C, SANDHAM N. Large eddy simulation of plane jet sound radiation[C]//9th AIAA/CEAS Aeroacoustics Conference and Exhibit. Hilton Head: American Institute of Aeronautics and Astronautics, 2003: 3166.
    [12] KEIDERLING F, KLEISER L, BOGEY C. Numerical study of eigenmode forcing effects on jet flow development and noise generation mechanisms[J]. Physics of Fluids, 2009, 21(4): 045106. doi: 10.1063/1.3112686
    [13] BOGEY C, BAILLY C. Effects of inflow conditions and forcing on subsonic jet flows and noise[J]. AIAA Journal, 2005, 43(5): 1000-1007. doi: 10.2514/1.7465
    [14] BOGEY C, BAILLY C, JUVÉ D. Noise investigation of a high subsonic, moderate Reynolds number jet using a compressible large eddy simulation[J]. Theoretical and Computational Fluid Dynamics, 2003, 16(4): 273-297. doi: 10.1007/s00162-002-0079-4
    [15] BODONY D J, LELE S K. Current status of jet noise predictions using large-eddy simulation[J]. AIAA Journal, 2008, 46(2): 364-380. doi: 10.2514/1.24475
    [16] ANDERSSON N, ERIKSSON L E, DAVIDSON L. Large-eddy simulation of subsonic turbulent jets and their radiated sound[J]. AIAA Journal, 2005, 43(9): 1899-1912. doi: 10.2514/1.13278
    [17] JORDAN P, GERVAIS Y, VALIERE J C, et al. Jet exhaust aerodynamics & noise : Final Results from Single Point Measurements[R]. Project deliverable D3.4, JEAN—EU 5th Framework Programme, G4RD-CT2000-00313, 2002.
    [18] 许聪, 刘琪麟, 赖焕新. 热喷射流动大涡模拟及网格敏感性评估[J]. 工程热物理学报, 2019, 40(7): 1503-1510.
    [19] MENDEZ S, SHOEYBI M, LELE S K, et al. On the use of the Ffowcs Williams-Hawkings equation to predict far-field jet noise from large-eddy simulations[J]. International Journal of Aeroacoustics, 2013, 12(1-2): 1-20. doi: 10.1260/1475-472X.12.1-2.1
    [20] ZHU M Q, ARROYO C P, POUANGUA F, et al. Isothermal and heated subsonic jet noise using large eddy simulations on unstructured grids[J]. Computers & Fluids, 2018, 171: 166-192.
    [21] SANJOSE M, POUANGUÉ A F, MOREAU S, et al. Unstructured les of the baseline exejet dual-stream jet[C]//20th AIAA/CEAS aeroacoustics conference. Atlanta: American Institute of Aeronautics and Astronautics, 2014: 3037.
    [22] MICHALKE A. Survey on jet instability theory[J]. Progress in Aerospace Sciences, 1984, 21: 159-199. doi: 10.1016/0376-0421(84)90005-8
    [23] KIM J, CHOI H. Large eddy simulation of a circular jet: effect of inflow conditions on the near field[J]. Journal of Fluid Mechanics, 2009, 620: 383-411. doi: 10.1017/S0022112008004722
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  524
  • HTML全文浏览量:  362
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-03
  • 网络出版日期:  2020-12-16

目录

    /

    返回文章
    返回