高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

高钙镁气田水中碳酸钙结垢行为研究与趋势预测

张利 马小龙 李平 宋兴福

张利, 马小龙, 李平, 宋兴福. 高钙镁气田水中碳酸钙结垢行为研究与趋势预测[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20200325001
引用本文: 张利, 马小龙, 李平, 宋兴福. 高钙镁气田水中碳酸钙结垢行为研究与趋势预测[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20200325001
ZHANG Li, MA Xiaolong, LI Ping, SONG Xingfu. Scaling potential prediction and scaling behavior of calcium carbonate in the gas field water with high calcium and magnesium contents[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20200325001
Citation: ZHANG Li, MA Xiaolong, LI Ping, SONG Xingfu. Scaling potential prediction and scaling behavior of calcium carbonate in the gas field water with high calcium and magnesium contents[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20200325001

高钙镁气田水中碳酸钙结垢行为研究与趋势预测

doi: 10.14135/j.cnki.1006-3080.20200325001
基金项目: 上海市优秀学术/技术带头人计划(18XD1424600)
详细信息
    作者简介:

    张利(1994-),女,重庆人,硕士生,研究方向为高钙镁气田水中碳酸钙的结垢预测。E-mail:y30171049@mail.ecust.edu.cn

    通讯作者:

    宋兴福,E-mail:xfsong@ecust.edu.cn

  • 中图分类号: TE992

Scaling potential prediction and scaling behavior of calcium carbonate in the gas field water with high calcium and magnesium contents

  • 摘要: 高钙镁气田水具有高矿化度、高浊度、高氯根离子和低pH值等显著特点,在后续处理中易发生碳酸钙结垢现象。通过分析结垢过程前后相关离子浓度变化,发现高钙镁气田水碳酸钙结垢类型为碳酸氢根型结垢,结垢物经X射线多晶衍射(XRD)和扫描电镜(SEM)表征分析后确定为球霰石型碳酸钙。以朗格利尔理论为背景,基于球霰石溶度积并以碳酸氢根活度系数为相关参数建立了球霰石饱和指数的结垢趋势预测模型,并成功在实际水结垢预测应用中实现精准预测,准确率达90%。

     

  • 图  1  二氧化碳、碳酸氢根和碳酸根随pH变化的分布情况

    Figure  1.  Distribution of carbon dioxide, bicarbonate and carbonate on the pH value

    图  2  pH和钙离子质量浓度随反应时间的变化

    Figure  2.  Variation of pH and calcium ion mass concentration with reaction time

    图  3  碳酸钙早期沉淀的XRD图谱

    Figure  3.  XRD spectra of calcium carbonate crystal polymorphs during initial precipitation

    图  4  30 ℃时pH对碳酸钙沉淀SEM微观形貌的影响

    Figure  4.  Influence of pH value on SEM micrographs of calcium carbonate during initial precipitation at 30 ℃

    图  5  碳酸钙多晶饱和指数(a)、国标推荐饱和指数(b)预测氯化钠体系高钙气田水中pH值及与实验值比较

    Figure  5.  Comparison of the experimental pH values in gas field water contained NaCl and calcium ions with the prediction values by calcium carbonate polycrystal saturation index (a), GB recommended saturation index (b)

    图  6  采用碳酸钙多晶饱和指数(a)、国标推荐饱和指数(b)预测氯化钠体系高钙镁气田水中pH值与实验值比较

    Figure  6.  Comparison of the experimental pH values in gas field water contained NaCl and calcium/ magnesium ions with the prediction values by calcium carbonate polycrystal saturation index (a), GB recommended saturation index (b)

    图  7  采用碳酸钙多晶饱和指数(a)、国标推荐饱和指数(b)预测含硫酸根的氯化钠体系高钙气田水中pH与实验值比较

    Figure  7.  Comparison of the experimental pH values in gas field water contained NaCl, calcium ion and sulfate with the prediction values by calcium carbonate polycrystal saturation index (a), GB recommended saturation index (b)

    图  8  球霰石饱和指数模型和国标SDSI模型预测气田水中pH与实验值偏差的统计分析(包括图5(c)6(c)7(c)共101组数据),(a)球霰石饱和指数模型预测偏差频数分布曲线,(b)SDSI模型预测偏差频数分布曲线

    Figure  8.  Statistical analysis of deviations of pH values between the experimental data and the prediction values by SDSI and VLSI models in gas field water (101 sets of data taken from Fig. 5(c), Fig. 6(c) and Fig. 7(c)), (a) VLSI frequency distribution curve, (b) SDSI frequency distribution curve

    表  1  某气田采出水的水质特征

    Table  1.   Characteristics of water quality in a shale gas produced water

    Mass concentration/(mg·L−1)pHDensity
    Na+K+Ca2+Mg2+Fe3+ClHCO3SO42−H2S
    223545005010608190447924337523206.11.055
    下载: 导出CSV

    表  2  30 ℃不同pH下碳酸钙沉淀前后离子浓度变化

    Table  2.   Concentration change of different ions before and after precipitation of calcium carbonate during differrent pH at 30 °C

    pHPre-reaction concentration/(mmol·L−1)Post-reaction concentration(mmol·l−1)$\Delta {C_{{\rm{HCO}}_3^{\rm{ - }}}}$/
    $\Delta{C_{{\rm{C}}{{\rm{a}}^{{\rm{2 + }}}}}} $
    Ca2+HCO 3Ca2+HCO 3
    8.2623.9310.2519.424.271.33
    8.107.6120.531.6211.031.59
    7.8816.1621.956.283.641.85
    7.8613.7331.521.257.281.94
    7.1058.4249.4637.296.492.03
    6.68128.0483.9591.1410.721.98
    下载: 导出CSV

    表  3  球霰石饱和指数和SDSI预测气田水结垢趋势

    Table  3.   Prediction of scaling and no scaling in the gas field water using VLSI and SDSI predictions

    SampleIonic strengtht/℃pHPCa2+/(mg·L−1)AlK/(mg·L−1)ScalingsituationsVLSISDSI
    11.5506.0105010433T0.1900.169
    2[20]0.04207.950149519T0.4861.037
    3[21]0.8906.5001358369T0.3701.539
    4[22]2.5475.9004437374C−0.0580.148*
    5[22]1408.000923313T1.1151.050
    61.2206.39916002947T0.3650.145
    76.42510002947T0.169−0.033*
    86.50220001341T0.2090.003
    96.22716001341C−0.170−0.369
    106.4106001341C−0.409−0.612
    116.13150011263T0.2060.004
    126.14740001263T0.199−0.077*
    136.06230001263C−0.083−0.287
    146.12620001263C−0.199−0.399
    156.07950011036T0.074−0.134*
    166.09140001036T−0.016−0.219*
    176.15030001036T−0.060−0.285*
    186.09920001036C−0.309−0.512
    196.0845999823T0.065−0.150*
    206.0475999763C−0.012−0.220
    T means solution turbidity; C means solution clarify
    下载: 导出CSV
  • [1] GEBAUER D, VÖLKEL A, CÖLFEN H. Stable prenucleation calcium carbonate clusters[J]. Science, 2008, 322(5909): 1819-1822. doi: 10.1126/science.1164271
    [2] GEBAUER D, GUNAWIDJAJA P N, KO J P, et al. Proto-calcite and proto-vaterite in amorphous calcium carbonates[J]. Angewandte Chemie International Edition, 2010, 49(47): 8889-8891. doi: 10.1002/anie.201003220
    [3] NIELSEN M H, ALONI S, DE YOREO J J. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways[J]. Science, 2014, 345(6201): 1158-1162. doi: 10.1126/science.1254051
    [4] TRIBELLO G A, BRUNEVAL F, LIEW C, et al. A molecular dynamics study of the early stages of calcium carbonate growth[J]. The Journal of Physical Chemistry B, 2009, 113(34): 11680-11687. doi: 10.1021/jp902606x
    [5] DEMICHELIS R, RAITERI P, GALE J D, et al. Stable prenucleation mineral clusters are liquid-like ionic polymers[J]. Nature communications, 2011, 2(6): 590.
    [6] OSTWALD W. Studien über die Bildung und Umwandlung fester Körper[J]. Zeitschrift für physikalische Chemie, 1897, 22(1): 289-330.
    [7] ELFIL H, HANNACHI A. A new index for scaling assessment[C]//Proceedings of the IDA World Congress, Spain. 2007: 21-26.
    [8] ELFIL H, HANNACHI A. Reconsidering water scaling tendency assessment[J]. AIChE Journal, 2006, 52(10): 3583-3591. doi: 10.1002/aic.10965
    [9] ELFIL H, ROQUES H. Role of hydrate phases of calcium carbonate on the scaling phenomenon[J]. Desalination, 2001, 137(1-3): 177-186. doi: 10.1016/S0011-9164(01)00216-8
    [10] LANGELIER W F. The analytical control of anti-corrosion water treatment[J]. Journal-American Water Works Association, 1936, 28(10): 1500-1521. doi: 10.1002/j.1551-8833.1936.tb13785.x
    [11] PEÑA J, BUIL B, GARRALON A, et al. The vaterite saturation index can be used as a proxy of the S& DSI in sea water desalination by reverse osmosis process[J]. Desalination, 2010, 254(1/3): 75-79. doi: 10.1016/j.desal.2009.12.011
    [12] PUCKORIUS P, BROOKE J. A new practical index for calcium carbonate scale prediction in cooling tower systems[J]. Corrosion, 1991, 47(4): 280-284. doi: 10.5006/1.3585256
    [13] SHEIKHOLESLAMI R. Scaling potential index (SPI) for CaCO3 based on Gibbs free energies[J]. AIChE journal, 2005, 51(6): 1782-1789. doi: 10.1002/aic.10415
    [14] MILLERO F, HUANG F, GRAHAM T, et al. The dissociation of carbonic acid in NaCl solutions as a function of concentration and temperature[J]. Geochimica et Cosmochimica Acta, 2007, 71(1): 46-55. doi: 10.1016/j.gca.2006.08.041
    [15] PLUMMER L N, BUSENBERG E. The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90 ℃, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O[J]. Geochimica et cosmochimica acta, 1982, 46(6): 1011-1040. doi: 10.1016/0016-7037(82)90056-4
    [16] MÜLLER G, IRION G, FÖRSTNER U. Formation and diagenesis of inorganic Ca− Mg carbonates in the lacustrine environment[J]. Naturwissenschaften, 1972, 59(4): 158-164. doi: 10.1007/BF00637354
    [17] RODRIGUEZ-BLANCO J, SHAW S, BOTS P, et al. The role of pH and Mg on the stability and crystallization of amorphous calcium carbonate[J]. Journal of Alloys and Compounds, 2012, 536(S1): S477-S479.
    [18] PURGSTALLER B, MAVROMATIS V, IMMENHAUSER A, et al. Transformation of Mg-bearing amorphous calcium carbonate to Mg-calcite – In situ monitoring[J]. Geochimica et Cosmochimica Acta, 2016, 174(1): 180-195.
    [19] PURGSTALLER B, KONRAD F, DIETZEL M, et al. Control of Mg2+/Ca2+ activity ratio on the formation of crystalline carbonate minerals via an amorphous precursor[J]. Crystal growth & design, 2017, 17(3): 1069-1078.
    [20] 谢发之, 刘瑾, 周汝洪, 等. 煤矿瓦斯抽采泵用循环水成垢预测与结垢机制研究——以新庄孜煤矿为例[J]. 应用化工, 2012, 41(1): 29-32.
    [21] 王宇飞. 碳酸钙结垢预测及影响因素分析[J]. 石化技术, 2015, 22(6): 30-31.
    [22] 冯国强, 俞敦义, 金名惠. 中原油田水碳酸钙结垢倾向预测软件及应用[J]. 油田化学, 2000, 17(3): 212-214.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  539
  • HTML全文浏览量:  396
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-25
  • 网络出版日期:  2020-12-16

目录

    /

    返回文章
    返回