高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

废弃烟头衍生多孔碳的制备及其电容吸附去离子电极的盐水淡化性能

徐城 李宇焓 金亦凡 闫志杰 张原源 钱敏 林功伟 龚尚庆

徐城, 李宇焓, 金亦凡, 闫志杰, 张原源, 钱敏, 林功伟, 龚尚庆. 废弃烟头衍生多孔碳的制备及其电容吸附去离子电极的盐水淡化性能[J]. 华东理工大学学报(自然科学版), 2021, 47(3): 361-369. doi: 10.14135/j.cnki.1006-3080.20200318001
引用本文: 徐城, 李宇焓, 金亦凡, 闫志杰, 张原源, 钱敏, 林功伟, 龚尚庆. 废弃烟头衍生多孔碳的制备及其电容吸附去离子电极的盐水淡化性能[J]. 华东理工大学学报(自然科学版), 2021, 47(3): 361-369. doi: 10.14135/j.cnki.1006-3080.20200318001
XU Cheng, LI Yuhan, JIN Yifan, YAN Zhijie, ZHANG Yuanyuan, QIAN Min, LIN Gongwei, GONG Shangqing. Porous Carbon Derived from Wasted Cigarette Filters for Water Desalination Based on Capacitive Deionization[J]. Journal of East China University of Science and Technology, 2021, 47(3): 361-369. doi: 10.14135/j.cnki.1006-3080.20200318001
Citation: XU Cheng, LI Yuhan, JIN Yifan, YAN Zhijie, ZHANG Yuanyuan, QIAN Min, LIN Gongwei, GONG Shangqing. Porous Carbon Derived from Wasted Cigarette Filters for Water Desalination Based on Capacitive Deionization[J]. Journal of East China University of Science and Technology, 2021, 47(3): 361-369. doi: 10.14135/j.cnki.1006-3080.20200318001

废弃烟头衍生多孔碳的制备及其电容吸附去离子电极的盐水淡化性能

doi: 10.14135/j.cnki.1006-3080.20200318001
基金项目: 大学生创新创业训练计划国家级资助项目(201910251087)
详细信息
    作者简介:

    徐城:徐 城(1995-),男,江西南昌人,硕士生,主要研究方向为电容吸附去离子

    通讯作者:

    钱 敏,E-mail:mqian@ecust.edu.cn

    林功伟,E-mail:gwlin@ecust.edu.cn

    龚尚庆,E-mail:sqgong@ecust.edu.cn

  • 中图分类号: X705,TQ352.4

Porous Carbon Derived from Wasted Cigarette Filters for Water Desalination Based on Capacitive Deionization

  • 摘要: 利用常压化学气相沉积,以KOH作为活化剂,在500~700 ℃制备了废弃烟头(WCFs)衍生多孔碳(MMCs)。比表面实验测试表明,废弃烟头衍生多孔碳的比表面积随着活化温度的升高而增加。当活化温度为700 ℃时,废弃烟头衍生多孔碳(MMC700)呈现微孔主导结构(孔径<2 nm),表面积为928 m2/g。利用MMC700作为电容吸附去离子电极,在初始浓度为5 mmol/L的NaCl水溶液中,当MMC700正负电极两端电压为1.2 V时,电极表现出8.66 mg/g的离子吸附能力。MMC700较初始废弃烟头具有约4.9%(质量分数)的碳产量,X射线光电子能谱分析表明MMC700具有92.87%(摩尔分数)的高碳含量。较低活化温度(700 ℃)时的KOH蒸气压较低,有利于环境保护。

     

  • 图  1  常压化学气相沉积系统(a)、废弃烟头(b)和600 ℃热解活化KOH/废弃烟头后生成的黑色固态混合物(c)

    Figure  1.  Atmosphere-pressure chemical vapor deposition system (a), photo of waste cigarette filters (b) and photo of black mixture in nickel boat after pyrolysis of KOH/WCFs at 600 ℃ (c)

    图  2  WCFs (a),MMC500 (b),MMC600 (c)和MMC700(d)的扫描电镜图像

    Figure  2.  SEM images of WCFs (a), MMC500 (b), MMC600 (c) and MMC700 (d)

    图  3  WCF、MMC500、MMC600、MMC700的拉曼光谱

    Figure  3.  Raman spectra of WCF, MMC500, MMC600, and MMC700

    图  4  MMC500、MMC600、MMC700的低分辨率 (a) 和高分辨率 (b) XPS

    Figure  4.  Low-resolution (a) and high-resolution (b) XPS spectra of MMC500, MMC600, and MMC700

    图  5  MMC500、MMC600、MMC700的氮气吸附脱附等温线(a);差分孔隙容量与孔径分布关系(b)和积分孔隙容量与孔径分布关系(c)

    Figure  5.  N2 adsorption-desorption isotherm (a); differential (b) and cumulative pore volume versus pore size (c) of MMC500, MMC600, and MMC700

    图  6  MMC500 (a)、MMC600 (b)和MMC700 (c)电极在不同电压下的离子吸附能力和电流曲线;离子吸附能力(d)、电荷效率 (e)、能量消耗随电压的变化 (f)

    Figure  6.  Electrosorption capacity and current of MMC500 (a); MMC600 (b); MMC700 CDI electrodes at different potential voltages (c); electrosorption capacity versus potential voltage (d) and charge efficiency versus potential voltage (e), energy consumption versus potential voltage (f)

    表  1  废弃烟头衍生多孔碳的元素成分

    Table  1.   Elemental concentrations of MMCs

    Samplex/%
    CON
    MMC50088.9510.021.03
    MMC60091.088.450.47
    MMC70092.876.410.72
    下载: 导出CSV

    表  2  WCFs、MMC500、MMC600、MMC700的比表面积和多孔性

    Table  2.   Surface area and porosity of WCFs, MMC500, MMC600 and MMC700

    MaterialsSBET/
    (m2·g−1)
    Smicropore/
    (m2·g−1)
    Smesopore/
    (m2·g−1)
    Vtotal pore/
    (cm3·g−1)
    Vmicropore/
    (cm3·g−1)
    Vmesopore/
    (cm3·g−1)
    Daverage/
    nm
    WCFs1.40.50.90.00500.00514.59
    MMC500351265860.250.110.142.88
    MMC6008607321280.460.300.162.13
    MMC7009288281000.480.340.142.09
    下载: 导出CSV
  • [1] LIU Y, NIE C Y, LIU X J, et al. Review on carbon-based composite materials for capacitive deionization[J]. RSC Advances, 2015, 5(20): 15205-15225. doi: 10.1039/C4RA14447C
    [2] JIA B, ZOU L. Wettability and its influence on graphene nanosheets as electrode material for capacitive deionization[J]. Chemical Physics Letters, 2012, 548: 23-28. doi: 10.1016/j.cplett.2012.06.016
    [3] SUSS M E, PORADA S, SUN X, et al. Water desalination via capacitive deionization: What is it and what can we expect from it?[J]. Energy & Environmental Science, 2015, 8: 2296-2319.
    [4] GAO Y, PAN L, LI H, et al. Electrosorption behavior of cations with carbon nanotubes and carbon nanofibres composite film electrodes[J]. Thin Solid Films, 2009, 517(5): 1616-1619. doi: 10.1016/j.tsf.2008.09.065
    [5] WAND M, XU X, TANG J, et al. High performance capacitive deionization electrodes based on ultrathin nitrogen-doped carbon/graphene nano-sandwiches[J]. Chemical Commounications, 2017, 53(78): 10784-10787.
    [6] PORADA S, BORCHARDT L, OSCHATZ M, et al. Direct prediction of desalination performance of porous carbon electrodes for capacitive deionization[J]. Energy & Environmental Science, 2013, 6(12): 3700-3712.
    [7] LI H, LU T, PAN L, et al. Electrosorption behavior of graphene in NaCl solutions[J]. Journal of Materials Chemistry, 2009, 19(37): 6773-6779. doi: 10.1039/b907703k
    [8] WAND X Z, LI M G, CHEN Y W, et al. Electrosorption of ions from aqueous solutions with carbon nanotubes and nanofibers composite film electrodes[J]. Applied Physics Letters, 2006, 89(5): 053127. doi: 10.1063/1.2335614
    [9] ZHAO S, YAN T, WANG H, et al. High capacity and high rate capability of nitrogen-doped porous hollow carbon spheres for capacitive deionization[J]. Applied Surface Science, 2016, 369: 460. doi: 10.1016/j.apsusc.2016.02.085
    [10] PORADA S, WEINSTEIN L, DASH R, et al. Water desalination using capacitive deionization with microporous carbon electrodes[J]. ACS Applied Materials & Interfaces, 2012, 4(3): 1194-1199.
    [11] ZHANG R F, ZHANG Y Y, WEI F. Horizontally aligned carbon nanotube arrays: Growth mechanism, controlled synthesis, characterization, properties and application[J]. Chemical Society Reviews, 2017, 46(12): 3661-3715. doi: 10.1039/C7CS00104E
    [12] GAO Y, ZHOU Y S, XIONG W, et al. Controlled growth of carbon nanotubes on electrodes under different bias polarity[J]. Applied Physics Letterts, 2009, 95(14): 143117. doi: 10.1063/1.3246144
    [13] PEI S F, CHENG H M. The reduction of graphene oxide[J]. Carbon, 2012, 50(9): 3210-3228. doi: 10.1016/j.carbon.2011.11.010
    [14] CHEN Y Z, YUE M B, HUANG Z H, et al. Electrospun carbon nanofiber networks from phenolic resin for capacitive deionization[J]. Chemical Engineering Journal, 2014, 252: 30-37. doi: 10.1016/j.cej.2014.04.099
    [15] VILLAR I, ROLDAN S, RUIZ V, et al. Capacitive deionization of NaCl solutions with modified activated carbon electrodes[J]. Energy & Fuels, 2010, 24(6): 3329-3333.
    [16] KAWANO T, KUBOTA M, ONYANGO M S, et al. Preparation of activated carbon from petroleum coke by KOH chemical activation for adsorption heat pump[J]. Applied Thermal Engineering, 2008, 28(8/9): 865-871. doi: 10.1016/j.applthermaleng.2007.07.009
    [17] LIU P, WANG H, YAN T, et al. Grafting sulfonic and amine functional groups on 3D graphene for improved capacitive deionization[J]. Journal of Materials Chemistry A, 2016, 4(14): 5303-5313. doi: 10.1039/C5TA10680J
    [18] MACKAY J, ERIKSEN M, SHAFEY O. The tobacco atlas[R]. 2nd ed. Atlanta: American Cancer Society, 2006.
    [19] NOVOTNY T E, BIALOUS S A, BURT L, et al. The environmental and health impacts of tobacco agriculture, cigarette manufacture and consumption[J]. Bulletin of the World Health Organization, 2015, 93(12): 877-880. doi: 10.2471/BLT.15.152744
    [20] SLAUGHTER E, GERSBERG R M, WATANABE K, et al. Toxicity of cigarette butts, and their chemical components, to marine and freshwater fish[J]. Tobacco Control, 2011, 20(6): i25.
    [21] OU J, WAN B, WANG F, et al. Superhydrophobic fibers from cigarette filters for oil spill clean up[J]. RSC Advances, 2016, 6(50): 44469-44474. doi: 10.1039/C6RA01303A
    [22] SOLTANI S M, YAZDI S K, HOSSEINI S. Effects of pyrolysis conditions on the porous structure construction of mesoporous charred carbon from used cigarette filters[J]. Applied Nanoscience, 2014, 4(5): 551-569. doi: 10.1007/s13204-013-0230-0
    [23] WAND Q, LIAN P, WAND B, et al. Red phosphorus encapsured in porous carbon derived from cigarette filter solid waste as a promising anode material for lithium-ion batteries[J]. Ionics, 2018, 24(11): 3393-3403. doi: 10.1007/s11581-018-2487-5
    [24] ZENG C, LI P, ZHANG L. Preparation of magnetic nickel hollow fibers with a trilobe structure using cellulose acetate fibers as templates[J]. Applied Surface Science, 2013, 266: 214-218. doi: 10.1016/j.apsusc.2012.11.151
    [25] YAND J, KUBOTA F, BABA Y, et al. Application of cellulose acetate to the selective adsorption and recovery of Au(111)[J]. Carbonhydrate Polymers, 2014, 111: 768-774. doi: 10.1016/j.carbpol.2014.05.003
    [26] BLANKENSHIP T S, MOKAYA R. Cigarette butt-derived carbons have ultra-high surface area and unprecedented hydrogen storage capacity[J]. Energy & Environmental Science, 2017, 10(12): 2552-2562.
    [27] POLARZ S, SMARSLY B, SCHATTKA J H. Hierachical porous carbon structures from cellulose acetate fibers[J]. Chemical of Materrials, 2002, 14(7): 2940-2945. doi: 10.1021/cm011271r
    [28] LEE M, KIM G P, HYEON D S, et al. Preparation of energy storage material derived from a used cigarette filter for a supercapacitor electrode[J]. Nanotechnology, 2014, 25(34): 345601. doi: 10.1088/0957-4484/25/34/345601
    [29] XU X T, WANG M, LIU Y, et al. Metal-organic framework-engaged formation of a hierarchical hybrid with carbon nanotube inserted porous carbon polyhedra for highly efficient capacitive deionization[J]. Journal of Materials Chemistry A, 2016, 4(15): 5467-5473. doi: 10.1039/C6TA00618C
    [30] WAND M, HOU S, LIU Y, et al. Capacitive neutralization deionization with flow electrodes[J]. Electrochimica Acta, 2016, 216: 211-218. doi: 10.1016/j.electacta.2016.09.026
    [31] 王森, 王永香, 李金霞. 三维石墨烯宏观体的制备及超级电容性能[J]. 华东理工大学学报(自然科学版), 2019, 45(3): 382-387.
    [32] WAND J, ZHU M, OUTLAW R A, et al. Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition[J]. Carbon, 2004, 42(14): 2867-2872. doi: 10.1016/j.carbon.2004.06.035
    [33] LIU Y, XU X T, WAND M, et al. Metal-organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization[J]. Chemical Commol/Lunications, 2015, 51(60): 12020-12023.
    [34] VOLKOV A G, PAULA S, DEAMER D W. Two mechanisms of permeation of small neutral molecules and hydrates ions across phospholipid bilayers[J]. Bioelectrochemistry and Bioenergetics, 1997, 42: 153-160. doi: 10.1016/S0302-4598(96)05097-0
    [35] STULL D R. Vapor pressure of pure substances: Organic and inorganic compounds[J]. Industrial and Engineering Chemistry, 1947, 39(4): 517-540. doi: 10.1021/ie50448a022
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1099
  • HTML全文浏览量:  748
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-18
  • 网络出版日期:  2020-07-14
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回