高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

基于钯炭催化剂的苯酚加氢反应及其本征动力学

王鹏 李涛 张海涛 房鼎业

王鹏, 李涛, 张海涛, 房鼎业. 基于钯炭催化剂的苯酚加氢反应及其本征动力学[J]. 华东理工大学学报(自然科学版), 2021, 47(3): 255-261. doi: 10.14135/j.cnki.1006-3080.20200308002
引用本文: 王鹏, 李涛, 张海涛, 房鼎业. 基于钯炭催化剂的苯酚加氢反应及其本征动力学[J]. 华东理工大学学报(自然科学版), 2021, 47(3): 255-261. doi: 10.14135/j.cnki.1006-3080.20200308002
WANG Peng, LI Tao, ZHANG Haitao, FANG Dingye. Phenol Hydrogenation Reaction and Its Intrinsic Kinetics Based on Pd/C Catalyst[J]. Journal of East China University of Science and Technology, 2021, 47(3): 255-261. doi: 10.14135/j.cnki.1006-3080.20200308002
Citation: WANG Peng, LI Tao, ZHANG Haitao, FANG Dingye. Phenol Hydrogenation Reaction and Its Intrinsic Kinetics Based on Pd/C Catalyst[J]. Journal of East China University of Science and Technology, 2021, 47(3): 255-261. doi: 10.14135/j.cnki.1006-3080.20200308002

基于钯炭催化剂的苯酚加氢反应及其本征动力学

doi: 10.14135/j.cnki.1006-3080.20200308002
详细信息
    作者简介:

    王鹏:王 鹏(1994—),男,安徽桐城人,硕士生,主要研究方向为催化反应工程。E-mail:wp940215@163.com

    通讯作者:

    李 涛,E-mail:tli@ecust.edu.cn

  • 中图分类号: TQ032.4

Phenol Hydrogenation Reaction and Its Intrinsic Kinetics Based on Pd/C Catalyst

  • 摘要: 将钯炭(Pd/C)催化剂应用到苯酚加氢制环己酮反应中,选择苯作为溶剂,通过控制变量法考察了压力、温度、氢气与苯酚物质的量之比、苯酚的质量空速等反应条件对反应的影响;建立了本征动力学模型,利用25组正交试验数据进行参数估值,并对动力学模型进行了检验。结果表明,Pd/C催化剂用于苯酚加氢制备环己酮时,适宜的反应条件为:反应温度175~205 ℃,反应压力0.1 MPa,氢气与苯酚物质的量之比约为4,苯酚质量空速0.2~0.4 h−1。经检验,本征动力学模型可靠性良好。

     

  • 图  1  苯酚加氢流程图

    Figure  1.  Flow sheet of phenol hydrogenation

    1—Gas cylinder;2—Pressure gauge;3—Filter;4—One-way valve;5—Ball valve;6—Pressure controller;7—Reducing valve;8—Mass flow controller;9—Temperature controller;10—Deaerator;11—Mixer;12—Heating furnace;13—Reaction tube;14—Condenser;15—Gas-liquid separator;16—Holding tank;17—Back-pressure valve;18—Soap film flowmeter;19—Gas chromatography;20—Needle valve;21—Constant-flux pump

    图  2  温度对反应的影响

    Figure  2.  Effect of temperature on the reaction

    图  3  压力对反应的影响

    Figure  3.  Effect of pressure on the reaction

    图  4  氢气与苯酚物质的量之比对反应的影响

    Figure  4.  Effect of mole ratio of H2 to phenol on the reaction

    图  5  苯酚质量空速对反应的影响

    Figure  5.  Effect of weight hourly space velocity of phenol on the reaction

    图  6  催化剂质量与苯酚质量空速之比对苯酚转化率的影响

    Figure  6.  Effect of ratio of catalyst mass to WHSV on phenol conversion

    图  7  环己酮出口摩尔分数实验值与模型计算值

    Figure  7.  Experimental values and model calculated values of cyclohexanone molar fraction at reactor outlet

    图  8  环己醇出口摩尔分数实验值与模型计算值

    Figure  8.  Experimental values and model calculated values of cyclohexanol molar fraction at reactor outlet

    表  1  溶剂对反应的影响

    Table  1.   Effect of solvent on the reaction

    SolventX/%S/%
    Dichloromethane56.7963.14
    Cyclohexane96.4294.37
    Ethanol98.2376.56
    Benzene97.7296.21
    下载: 导出CSV

    表  2  Pd/C催化剂颗粒尺寸对苯酚转化率的影响

    Table  2.   Effect of Pd/C catalyst particle size on phenol conversion

    Particle size/μmX/%
    380~83088.84
    250~38093.76
    180~25097.52
    150~18097.72
    120~15097.73
    下载: 导出CSV

    表  3  固定床反应器内苯酚加氢动力学实验数据

    Table  3.   Kinetic experimental data of phenol hydrogenation in fixed bed reactor

    No.p/MPat/℃n(H2)∶n(Phenol)X/%SCyclohexanone/%SCyclohexanol+Others/%
    10.10160.1279.3698.721.28
    20.11175.2492.7496.443.56
    30.11190.3698.1394.345.66
    40.10205.3893.4790.669.34
    50.11220.51088.7486.5313.47
    60.21160.2486.6495.424.58
    70.20175.1693.3994.135.87
    80.22190.0898.6391.308.70
    90.22205.21094.2888.0411.96
    100.21220.4282.6492.267.74
    110.31160.2688.8291.248.76
    120.31175.3893.5689.8910.11
    130.32190.21098.7588.8211.18
    140.31205.5283.7690.839.17
    150.30220.6488.5187.6612.34
    160.42160.3890.2288.9711.03
    170.41175.31093.9587.5112.49
    180.41190.5286.2490.899.11
    190.42205.3493.4284.4815.52
    200.42220.2689.6380.3919.61
    210.52160.11091.3581.2318.77
    220.52175.1283.1289.3610.64
    230.50190.3498.5888.4911.51
    240.51205.2693.9583.7016.30
    250.52220.4891.1774.8425.16
    下载: 导出CSV

    表  4  动力学模型统计检验

    Table  4.   Statistical test of the kinetic model

    FormulaMMPρ2FF0.05(10,14)
    325100.995 3124.732.60
    425100.993 680.562.60
    下载: 导出CSV
  • [1] 姜日元, 毕馨丹, 张桂华. 环己酮生产及市场情况分析[J]. 化学工业, 2019, 37(5): 32-35. doi: 10.3969/j.issn.1673-9647.2019.05.007
    [2] TIAN C, FANG H, CHEN H, et al. Photodeposition of Pd onto TiO2 nanowires for aqueous-phase selective hydrogenation of phenolics to cyclohexanones[J]. Nanoscale, 2020, 12(4): 2603-2612. doi: 10.1039/C9NR08324C
    [3] CHEN Y, KONG X, MAO S, et al. Study of the role of alkaline sodium additive in selective hydrogenation of phenol[J]. Chinese Journal of Catalysis, 2019, 40(10): 1516-1524. doi: 10.1016/S1872-2067(19)63386-3
    [4] LI J, YANG L, LI F, et al. Hydration of cyclohexene to cyclohexanol over SO3H-functionalized imidazole ionic liquids[J]. Reaction Kinetics, Mechanisms and Catalysis, 2015, 114(1): 173-183. doi: 10.1007/s11144-014-0778-z
    [5] WU M, ZHAN W, GUO Y, et al. An effective Mn-Co mixed oxide catalyst for the solvent-free selective oxidation of cyclohexane with molecular oxygen[J]. Applied Catalysis A: General, 2016, 523: 97-106. doi: 10.1016/j.apcata.2016.06.001
    [6] ZHANG Y, ZHOU J C, LI K, et al. Synergistic catalytic hydrogenation of phenol over hybrid nano-structure Pd catalyst[J]. Molecular Catalysis, 2019, 478: 1-9.
    [7] 李明, 伍小明. 我国苯酚合成环己酮技术研究进展[J]. 精细与专用化学品, 2019, 27(3): 52-54.
    [8] 孔祥千. 苯酚选择性加氢催化体系的设计及反应机理研究[D]. 杭州: 浙江大学, 2019.
    [9] YANG G X, ZHANG J X, JIANG H, et al. Turning surface properties of Pd/N-doped porous carbon by trace oxygen with enhanced catalytic performance for selective phenol hydrogenation to cyclohexanone[J]. Applied Catalysis A: General, 2019, 588: 1-8.
    [10] CHEN Y, LIAW C, LEE L. Selective hydrogenation of phenol to cyclohexanone over palladium supported on calcined Mg/Al hydrotalcite[J]. Applied Catalysis A: General, 1999, 177(1): 1-8. doi: 10.1016/S0926-860X(98)00252-X
    [11] ALBERS P, BURMEISTER R, SEIBOLD K, et al. Investigations of palladium catalysts on different carbon supports[J]. Journal of Catalysis, 1999, 181(1): 145-154. doi: 10.1006/jcat.1998.2279
    [12] 李孝国, 成宏, 马月谦, 等. 氢溢流现象及其在催化反应中的应用[J]. 工业催化, 2015, 15(增刊): 116-118.
    [13] 王军, 乔旭, 丁健, 等. 流动体系中溢流氢在苯加氢催化反应中的作用[J]. 南京化工大学学报(自然科学版), 2000, 22(2): 23-27.
    [14] 赵德华, 吕德伟, 臧雅茹, 等. 多相催化中的溢流作用[J]. 化学进展, 1997, 9(2): 123-130. doi: 10.3321/j.issn:1005-281X.1997.02.002
    [15] LI G, HAN J, WANG H, et al. Role of dissociation of phenol in its selective hydrogenation on Pt(Ⅲ) and Pd(Ⅲ)[J]. ACS Catalysis, 2015, 5(3): 2009-2016. doi: 10.1021/cs501805y
    [16] GONZÁLEZ-VELASCO J R, GUTIÉRREZ-ORTIZ J I, GONZÁLEZ-MARCOS J A, et al. Kinetics of the selective hydrogenation of phenol to cyclohexanone over a Pd-alumina catalyst[J]. Reaction Kinetics & Catalysis Letters, 1986, 32(2): 505-512.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  2078
  • HTML全文浏览量:  987
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-08
  • 网络出版日期:  2020-07-14
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回