高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

基于挤压弯曲的柔性银导线力学可靠性试验研究

李超 孙权 秦宗慧 汤成莉 鹿业波 陈建钧

李超, 孙权, 秦宗慧, 汤成莉, 鹿业波, 陈建钧. 基于挤压弯曲的柔性银导线力学可靠性试验研究[J]. 华东理工大学学报(自然科学版), 2021, 47(3): 354-360. doi: 10.14135/j.cnki.1006-3080.20200212004
引用本文: 李超, 孙权, 秦宗慧, 汤成莉, 鹿业波, 陈建钧. 基于挤压弯曲的柔性银导线力学可靠性试验研究[J]. 华东理工大学学报(自然科学版), 2021, 47(3): 354-360. doi: 10.14135/j.cnki.1006-3080.20200212004
LI Chao, SUN Quan, QIN Zonghui, TANG Chengli, LU Yebo, CHEN Jianjun. Experimental Study on Mechanical Reliability of Flexible Silver Wire Based on Extrusion Bending[J]. Journal of East China University of Science and Technology, 2021, 47(3): 354-360. doi: 10.14135/j.cnki.1006-3080.20200212004
Citation: LI Chao, SUN Quan, QIN Zonghui, TANG Chengli, LU Yebo, CHEN Jianjun. Experimental Study on Mechanical Reliability of Flexible Silver Wire Based on Extrusion Bending[J]. Journal of East China University of Science and Technology, 2021, 47(3): 354-360. doi: 10.14135/j.cnki.1006-3080.20200212004

基于挤压弯曲的柔性银导线力学可靠性试验研究

doi: 10.14135/j.cnki.1006-3080.20200212004
基金项目: 浙江省自然科学基金(LQ19E050008)
详细信息
    作者简介:

    李超:李 超(1992-),男,安徽人,硕士生,主要研究方向为柔性电子力学稳定性。E-mail:y30180344@mail.ecust.edu.cn

    通讯作者:

    孙 权,E-mail:sunquan0501@163.com

    秦宗慧,E-mail:zhqin@mail.ecust.edu.cn

  • 中图分类号: TH114

Experimental Study on Mechanical Reliability of Flexible Silver Wire Based on Extrusion Bending

  • 摘要: 柔性电子产品在使用过程中不可避免地会受到拉伸、弯曲等多种形式的复杂变形,在长时间工作中疲劳成为产品失效的重要模式之一。针对柔性电子导线可靠性问题,通过原位疲劳测试平台对导线弯曲疲劳损伤行为进行研究。在弯曲测试过程中,通过理论分析定量确定薄膜最小曲率半径与挤压位移的关系,并利用有限元仿真及实验验证了推论的正确性,然后对试样分别进行单次和疲劳弯曲试验研究。结果表明,墨水浓度越低,制备出的银薄膜孔隙率越高,初始电阻越大,同时孔隙作为缺陷使薄膜抗弯曲性能变差,但是增大的孔隙率能够有效地抑制薄膜疲劳损伤演化,使其弯曲疲劳稳定性提高。

     

  • 图  1  挤压自由弯曲图

    Figure  1.  Extrusion free bending diagram

    图  2  理想压杆大变形示意图

    Figure  2.  Large deformation of the ideal pressure bar schematic diagram

    图  3  试样曲率半径与轴向位移关系

    Figure  3.  Relationship between radius of curvature and axial displacement of the sample

    图  4  挤压位移为25 mm时的ABAQUS仿真结果

    Figure  4.  ABAQUS Simulation result of extrusion displacement of 25 mm

    图  5  试验机系统结构框图

    Figure  5.  Structure diagram of the testing machine system

    图  6  试验机示意图

    Figure  6.  Schematic diagram of the testing machine

    图  7  挤压弯曲试验实物图

    Figure  7.  Physical picture of extruded bending experiment

    图  8  试样扫描电镜表面形貌

    Figure  8.  SEM observations of the surface morphology of prepared samples

    图  9  不同质量分数墨水制备样品与初始电阻之间关系

    Figure  9.  Relationship between prepared samples of different mass fractions of ink and initial electrical resistance

    图  10  电阻变化率与单次弯曲关系

    Figure  10.  Relationship between change rate of the electrical resistance and single bending

    图  11  电阻变化率与弯曲疲劳循环次数关系

    Figure  11.  Relationship between change rate of the electrical resistance and the number of bending fatigue cycles

    图  12  弯曲疲劳循环后薄膜断裂裂纹形貌

    Figure  12.  Morphology of the fracture crack of thin film after bending fatigue cycles

    表  1  轴向位移、转角、曲率半径的对应关系

    Table  1.   Corresponding relationships of axial displacement, angle and radius of curvature

    x/mmα/(°)ρ/mm
    00
    326.9618.52
    638.3012.97
    947.2010.47
    1254.828.97
    1561.687.92
    1868.007.14
    2173.956.53
    2479.586.02
    2785.005.60
    3090.245.23
    3395.334.91
    36100.334.62
    39105.274.36
    42110.074.12
    45114.873.90
    下载: 导出CSV
  • [1] 冯雪, 陆炳卫, 吴坚, 等. 可延展柔性无机微纳电子器件原理与研究进展[J]. 物理学报, 2014, 63(1): 014201. doi: 10.7498/aps.63.014201
    [2] YUAN H, LEI T, QIN Y, et al. Flexible electronic skins based on piezoelectric nanogenerators and piezotronics[J]. Nano Energy, 2019, 59: 84-90. doi: 10.1016/j.nanoen.2019.01.072
    [3] WANG W, SMIRNOV V, LI H, et al. Vapor textured aluminum-doped zinc oxide on cellophane paper for flexible thin film solar cells[J]. Solar Energy Materials and Solar Cells, 2018, 188: 105-111. doi: 10.1016/j.solmat.2018.08.025
    [4] KIM C D, PAEK S H, LEE J K, et al. Flexible technology for large-size E-paper displays[J]. Current Applied Physics, 2010, 10(4): 127-130. doi: 10.1016/j.cap.2010.08.021
    [5] YIN Y, CUI Y, LI Y, et al. Thermal management of flexible wearable electronic devices integrated with human skin considering clothing effect[J]. Applied Thermal Engineering, 2018, 144: 504-511. doi: 10.1016/j.applthermaleng.2018.08.088
    [6] KIM B J, LEE J H, YANG T Y, et al. Effect of film thickness on the stretchability and fatigue resistance of Cu films on polymer substrates[J]. Journal of Materials Research, 2014, 29(23): 2827-2834. doi: 10.1557/jmr.2014.339
    [7] 郑建华, 张亚萍, 花巍, 等. 银浆流变性能对硅太阳电池电性能的影响[J]. 华东理工大学学报(自然科学版), 2009, 35(3): 396-399. doi: 10.3969/j.issn.1006-3080.2009.03.012
    [8] LUO X M, ZHANG B, ZHANG G P. Fatigue of metals at nanoscale: Metal thin films and conductive interconnects for flexible device application[J]. Nano Materials Science, 2019, 1(3): 198-207. doi: 10.1016/j.nanoms.2019.02.003
    [9] KELLER R R, GEISS R H, CHENG Y, et al. Microstructure evolution during electric current induced thermo-mechanical fatigue of interconnects[J]. MRS Online Proceedings Library Archive, 2005, 863: 295-300.
    [10] SUN X J, WANG C C, ZHANG J, et al. Thickness dependent fatigue life at microcrack nucleation for metal thin films on flexible substrates[J]. Journal of Physics D: Applied Physics, 2008, 41(19): 195404. doi: 10.1088/0022-3727/41/19/195404
    [11] KIM B J, JUNG S Y, CHO Y, et al. Crack nucleation during mechanical fatigue in thin metal films on flexible substrates[J]. Acta Materialia, 2013, 61(9): 3473-3481. doi: 10.1016/j.actamat.2013.02.041
    [12] DAI C Y, ZHANG G P, YAN C. Size effects on tensile and fatigue behaviour of polycrystalline metal foils at the micrometer scale[J]. Philosophical Magazine, 2011, 91(6): 932-945. doi: 10.1080/14786435.2010.538017
    [13] 汤朋朋, 温雯, 黄永安, 等. 弯曲半径对柔性电子器件层间分离的影响[J]. 中国机械工程, 2017, 28(19): 2354-2359. doi: 10.3969/j.issn.1004-132X.2017.19.013
    [14] 李银山, 刘波, 潘文波, 侯书军. 弹性压杆的大变形分析[J]. 河北工业大学学报, 2011, 40(5): 31-35. doi: 10.3969/j.issn.1007-2373.2011.05.007
    [15] TANG C, ZHENG S, WANG F, et al. Microwave-assisted two-steps method for the facile preparation of silver nanoparticle conductive ink[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(12): 11588-11597. doi: 10.1007/s10854-019-01516-5
    [16] TANG C, XING B, HU G, et al. A facile microwave approach to the fast-and-direct production of silver nano-ink[J]. Materials Letters, 2017, 188: 220-223. doi: 10.1016/j.matlet.2016.11.009
    [17] KIM S, WON S, SIM G D, et al. Tensile characteristics of metal nanoparticle films on flexible polymer substrates for printed electronics applications[J]. Nanotechnology, 2013, 24(8): 085701. doi: 10.1088/0957-4484/24/8/085701
    [18] SIM G D, WON S, LEE S B. Tensile and fatigue behaviors of printed Ag thin films on flexible substrates[J]. Applied Physics Letters, 2012, 101(19): 191907. doi: 10.1063/1.4766447
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  502
  • HTML全文浏览量:  390
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-12
  • 网络出版日期:  2020-12-16
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回