高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

模板法制备耐久性疏水环氧涂层

朱鑫睿 高永盛 张衍 刘育建

朱鑫睿, 高永盛, 张衍, 刘育建. 模板法制备耐久性疏水环氧涂层[J]. 华东理工大学学报(自然科学版), 2021, 47(3): 272-277. doi: 10.14135/j.cnki.1006-3080.20200101001
引用本文: 朱鑫睿, 高永盛, 张衍, 刘育建. 模板法制备耐久性疏水环氧涂层[J]. 华东理工大学学报(自然科学版), 2021, 47(3): 272-277. doi: 10.14135/j.cnki.1006-3080.20200101001
ZHU Xinrui, GAO Yongsheng, ZHANG Yan, LIU Yujian. Preparation of Robust Hydrophobic Epoxy Coating by Template Method[J]. Journal of East China University of Science and Technology, 2021, 47(3): 272-277. doi: 10.14135/j.cnki.1006-3080.20200101001
Citation: ZHU Xinrui, GAO Yongsheng, ZHANG Yan, LIU Yujian. Preparation of Robust Hydrophobic Epoxy Coating by Template Method[J]. Journal of East China University of Science and Technology, 2021, 47(3): 272-277. doi: 10.14135/j.cnki.1006-3080.20200101001

模板法制备耐久性疏水环氧涂层

doi: 10.14135/j.cnki.1006-3080.20200101001
基金项目: 中央高校基本科研业务费专项资金资助(JKD01211701)
详细信息
    作者简介:

    朱鑫睿(1994-),男,江苏南通人,硕士生,主要研究方向为耐久性超疏水材料的制备。E-mail:15261800327@163.com

    通讯作者:

    张 衍,E-mail:yzhang@ecust.edu.cn

    刘育建,E-mail:yjliu@ecust.edu.cn

  • 中图分类号: TQ323.5

Preparation of Robust Hydrophobic Epoxy Coating by Template Method

  • 摘要: 选用综合性能优异的环氧树脂为基体,通过复型氯化钠辅助刻蚀的有机硅树脂模板,制备了疏水性环氧涂层。研究了氯化钠浓度、喷涂次数对涂层微结构和润湿性能的影响。结果表明:随着氯化钠质量分数和喷涂次数的增加,环氧涂层表面逐渐形成了阶梯状的多级粗糙结构,疏水性明显提高,表面接触角从未改性前的80.2°提高至130.0°;涂层具有优异的耐强酸和强碱性能;经过50次摩擦实验后,疏水性未发生改变;多孔有机硅模板在20次浇注-脱模循环后形貌保持完好,可以重复使用。

     

  • 图  1  刻蚀后的有机硅模板表面的EDS图谱(a)和SEM图像(b)

    Figure  1.  EDS analysis result (a) and SEM image (b) of organosilicone template surface after etching

    图  2  20次浇注-脱模循环后的有机硅模板表面(a)和环氧涂层表面(b)的扫描电镜图像

    Figure  2.  SEM image of organosilicone template surface (a) and epoxy coating (b) after 20 cycles of pouring-demoulding

    图  3  不同质量分数氯化钠溶液及喷涂次数的环氧涂层的SEM图像

    Figure  3.  SEM images of epoxy coatings with different sodium chloride mass fraction and spray times

    图  4  饱和氯化钠溶液喷涂30次,刻蚀后的有机硅树脂单孔(a)和环氧涂层表面单颗粒(b)的扫描电镜图像

    Figure  4.  SEM image of single hole of organosilicone resin (a) and single particle of epoxy coating surface (b) sprayed with saturated sodium chloride solution 30 times

    图  5  氯化钠溶液质量分数及喷涂次数对环氧涂层接触角的影响

    Figure  5.  Effect of sodium chloride solution mass fraction and spray times on static contact angle of epoxy coatings

    图  6  磨损次数对环氧涂层表面接触角的影响(a)和50次磨损实验后环氧涂层表面的SEM图像(b)

    Figure  6.  Effect of wear times on the static contact angle of epoxy coating (a) and SEM image of epoxy coating surface after 50 wear times (b)

    图  7  磨损对颗粒复合法(a)和模板法(b)制备的涂层表面微结构的影响

    Figure  7.  Effect of wear on surfaces with microstructures by particle composite method (a) and on the template method (b)

    图  8  酸、碱溶液中浸入时间对环氧涂层接触角的影响

    Figure  8.  Effect of immersion time on contant angle of epoxy coating in acid-base solution

  • [1] WANG H, XUE Y, WANG X, et al. Durable, self-healing superhydrophobic and superoleophobic surfaces from fluorinated-decyl polyhedral oligomeric silsesquioxane and hydrolyzed fluorinated alkyl silane[J]. Angewandte Chemie International Edition, 2011, 50(48): 11433-11436. doi: 10.1002/anie.201105069
    [2] CHEN K, ZHOU S, YANG S, et al. Fabrication of all-water-based self-repairing superhydrophobic coatings based on UV-responsive microcapsules[J]. Advanced Functional Materials, 2015, 25(7): 1035-1041. doi: 10.1002/adfm.201403496
    [3] 赵宁, 卢晓英, 张晓艳, 等. 超疏水表面的研究进展[J]. 化学进展, 2007, 19(6): 860-871. doi: 10.3321/j.issn:1005-281X.2007.06.003
    [4] 江雷. 从自然到仿生的超疏水纳米界面材料[J]. 科技导报, 2005, 23(2): 4-9. doi: 10.3321/j.issn:1000-7857.2005.02.002
    [5] 高雪峰. 天然超疏水生物表面研究的新进展[J]. 物理, 2006, 35(7): 559-564. doi: 10.3321/j.issn:0379-4148.2006.07.008
    [6] LI D W, WANG H, LIU H, et al. Large-scale fabrication of durable and robust super-hydrophobic spray coatings with excellent repairable and anti-corrosion performance[J]. Chemical Engineering Journal, 2019, 367: 169-179. doi: 10.1016/j.cej.2019.02.093
    [7] WANG N, XIONG D S, DENG Y L, et al. Mechanically robust superhydrophobic steel surface with anti-icing, UV-durability, and corrosion resistance properties[J]. ACS Applied Materials & Interfaces, 2015, 7(11): 6260-6272.
    [8] ELLINAS K, TSEREPI A, GOGOLIDES E. Durable superhydrophobic and superamphiphobic polymeric surfaces and their applications: A review[J]. Advances in Colloid and Interface Science, 2017, 250: 132-157. doi: 10.1016/j.cis.2017.09.003
    [9] 郑黎俊, 乌学东, 楼增, 等. 表面微细结构制备超疏水表面[J]. 科学通报, 2004, 49(17): 1691-1699. doi: 10.3321/j.issn:0023-074X.2004.17.001
    [10] 杨可成, 徐丽慧, 孟云, 等. 耐久性超疏水表面的研究进展[J]. 化工新型材料, 2019, 47(7): 232-236.
    [11] 谢永元. 以砂纸为模板制作聚合物超疏水表面[J]. 高等学校化学学报, 2007, 28(8): 1577-1580. doi: 10.3321/j.issn:0251-0790.2007.08.030
    [12] 王庆军, 陈庆民. 超疏水表面的制备技术及其应用[J]. 高分子材料科学与工程, 2005, 21(2): 6-10. doi: 10.3321/j.issn:1000-7555.2005.02.002
    [13] ZHANG E, WANG Y S, LI L. Bio-inspired design of hierarchical PDMS microstructures with tunable adhesive superhydrophobicity[J]. Nanoscale, 2015, 7(14): 6151-6158. doi: 10.1039/C5NR00356C
    [14] CHOI D, YOO J, PARK S M, et al. Facile and cost-effective fabrication of patternable superhydrophobic surfaces via salt dissolution assisted etching[J]. Applied Surface Science, 2017, 393: 449-456. doi: 10.1016/j.apsusc.2016.10.057
    [15] LI R, GU Y, WANG Y, et al. Effect of particle size on gamma radiation shielding property of gadolinium oxide dispersed epoxy resin matrix composite[J]. Materials Research Express, 2017, 4(3): 1-10.
    [16] 翟广坤, 尚柏林, 韩欣珉. 利用分形结构修饰疏水表面的研究[J]. 空军工程大学学报(自然科学版), 2018, 19(1): 32-36.
    [17] 李艳峰, 于志家, 于跃飞, 等. 化学刻蚀法制备黄铜基超疏水表面[J]. 化工学报, 2007, 58(12): 3117-3121. doi: 10.3321/j.issn:0438-1157.2007.12.028
    [18] XING R, LIU S, LATTHE S S, et al. Recent advances in durability of superhydrophobic self-cleaning technology: A critical review[J]. Progress in Organic Coatings, 2020, 138: 105381. doi: 10.1016/j.porgcoat.2019.105381
    [19] WANG ZELINLAN, GAO XIAOYU, WEN GANG, et al. Robust silicon dioxide @ epoxy resin micronanosheet superhydrophobic omnipotent protective coating for applications[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 550: 9-19.
    [20] BAYER I. On the durability and wear resistance of transparent superhydrophobic coatings[J]. Coatings, 2017, 7(1): 1-24.
  • 加载中
图(8)
计量
  • 文章访问数:  950
  • HTML全文浏览量:  770
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-01
  • 网络出版日期:  2020-07-14
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回