高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

锂离子在石墨、MoS2及其复合材料中扩散过程的分子模拟及量子力学研究

张少阳 刘宇 刘洪来

张少阳, 刘宇, 刘洪来. 锂离子在石墨、MoS2及其复合材料中扩散过程的分子模拟及量子力学研究[J]. 华东理工大学学报(自然科学版), 2021, 47(2): 129-136. doi: 10.14135/j.cnki.1006-3080.20191224004
引用本文: 张少阳, 刘宇, 刘洪来. 锂离子在石墨、MoS2及其复合材料中扩散过程的分子模拟及量子力学研究[J]. 华东理工大学学报(自然科学版), 2021, 47(2): 129-136. doi: 10.14135/j.cnki.1006-3080.20191224004
ZHANG Shaoyang, LIU Yu, LIU Honglai. Molecular Simulation and Quantum Mechanical Study of Lithium Ion Diffusion in Graphite, MoS2 and Their Composites[J]. Journal of East China University of Science and Technology, 2021, 47(2): 129-136. doi: 10.14135/j.cnki.1006-3080.20191224004
Citation: ZHANG Shaoyang, LIU Yu, LIU Honglai. Molecular Simulation and Quantum Mechanical Study of Lithium Ion Diffusion in Graphite, MoS2 and Their Composites[J]. Journal of East China University of Science and Technology, 2021, 47(2): 129-136. doi: 10.14135/j.cnki.1006-3080.20191224004

锂离子在石墨、MoS2及其复合材料中扩散过程的分子模拟及量子力学研究

doi: 10.14135/j.cnki.1006-3080.20191224004
基金项目: 国家自然科学基金项目(21776070, 91534202, 91834301)
详细信息
    作者简介:

    张少阳(1991—),女,硕士生,研究方向为锂离子电池。E-mail:Zhang1sy@163.com

    通讯作者:

    刘 宇,E-mail:liuyu89@mail.sysu.edu.cn

  • 中图分类号: TM911

Molecular Simulation and Quantum Mechanical Study of Lithium Ion Diffusion in Graphite, MoS2 and Their Composites

  • 摘要: 锂离子在电极材料中的传递性能对电池的充放电速率起着至关重要的作用。采用非平衡态分子动力学(NEMD)方法,模拟了充电过程中锂离子在石墨、MoS2及其复合材料(G/MoS2)中的迁移过程,考察了锂离子的非平衡态扩散时间、平衡态扩散系数(D)和吸附能,探究了石墨、MoS2层间距及边缘结构对锂离子扩散的影响。计算结果表明:锂离子的传递扩散系数与其自扩散系数间有5~7个数量级的差别;锂离子在石墨、MoS2中迁移的最佳层间距分别为0.42、0.75 nm;石墨边缘结构对锂离子迁移的促进效果依次为:C−OH>C−F>C= O>C−H。G/MoS2复合材料的分析结果表明:材料复合的均匀度越高,越有利于锂离子的扩散。

     

  • 图  1  体系在分子动力学模拟中的初始态

    Figure  1.  A initial state of the system in the MD simulation

    图  2  石墨和MoS2的层间距对Li+扩散时间和自扩散系数的影响

    Figure  2.  Effect of the layer spacing of graphite and MoS2 on Li+ diffusion time and self-diffusion coefficient

    图  3  石墨和MoS2的层间距对Li+吸附能的影响

    Figure  3.  Effect of the layer spacing of graphite and MoS2 on Li+ adsorption energy

    图  4  石墨边缘基团对Li+扩散时间的影响(L=0.34 nm)

    Figure  4.  Effect of graphite edge groups on Li+ diffusion time (L=0.34 nm)

    图  5  石墨锯齿形边缘基团对Li+扩散时间的影响

    Figure  5.  Effect of graphite serrated edge groups on Li+ diffusion time

    图  6  MoS2边缘为Mo或S原子时Li+分布结构图

    Figure  6.  Structure diagram of Li+ distribution when MoS2 edge is Mo or S atom

    图  7  G/MoS2复合材料结构类型

    Figure  7.  Structure types of G/MoS2 composites

    图  8  G/MoS2复合材料结构对锂离子扩散的影响:(a)锂离子在复合材料中整体的扩散时间和自扩散系数;(b)锂离子在复合材料内部不同层间的自扩散系数

    Figure  8.  Effect of G/MoS2 composite material structures on lithium ion diffusion: (a) Overall diffusion time and self-diffusion coefficient of Li+ in the composite materials; (b) Self-diffusion coefficient of Li+ between different layers in the composite materials

  • [1] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2011, 414(6861): 171-179.
    [2] SUN X L, HAO G P, LU X Y, et al. High-defect hydrophilic carbon cuboids anchored with Co/CoO nanoparticles as highly-efficient and ultra-stable lithium-ion battery anodes[J]. Journal of Materials Chemistry A, 2016, 4: 10166-10173.
    [3] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176. doi: 10.1021/ja3091438
    [4] GOODENOUGH J B, KIM Y. Challenges for rechargeable batteries[J]. Journal of Power Sources, 2011, 196(16): 6688-6694. doi: 10.1016/j.jpowsour.2010.11.074
    [5] HAI N Q, KIM H, YOO I S, et al. Comparative study of mechanically milled MoS2 and MoSe2 in graphite matrix as anode materials for high-performance lithium-ion batteries[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(9): 6469-6474. doi: 10.1166/jnn.2018.15667
    [6] ZHANG P C, FANG Y M, ZHOU Y H, et al. Epitaxial growth and intrinsic nature of molybdenum disulfide on graphite[J]. Applied Physics Express, 2017, 10(5): 055201.
    [7] ZHANG X W, HE D W, YI L X, et al. Electron dynamics in MoS2-graphite heterostructures[J]. Nanoscale, 2017, 9(38): 14533-14539. doi: 10.1039/C7NR04763K
    [8] TIWARI A P, YOO H, LEE J, et al. Prevention of sulfur diffusion using MoS2-intercalated 3D-nanostructured graphite for high-performance lithium-ion batteries[J]. Nanoscale, 2015, 7(28): 11928-11933. doi: 10.1039/C5NR03111G
    [9] WANG T, ZHAO G, SUN C, et al. Graphene-assisted exfoliation of molybdenum disulfide to fabricate 2D heterostructure for enhancing lithium storage[J]. Advanced Materials Interfaces, 2017, 4(14): 1601187. doi: 10.1002/admi.201601187
    [10] AGARWAL R R. Phase changes and diffusivity in the carbon-lithium electrode[J]. Journal of Power Sources, 1989, 25(2): 151-158. doi: 10.1016/0378-7753(89)85007-4
    [11] VAN der VEN A, CEDER G, ASTA M, et al. First-principles theory of ionic diffusion with nondilute carriers[J]. Physical Review B, 2001, 64(18): 184307. doi: 10.1103/PhysRevB.64.184307
    [12] VAN der VEN A, CEDER G. Lithium diffusion mechanisms in layered intercalation compounds[J]. Journal of Power Sources, 2001, 97-98: 529-531.
    [13] CHEN Y C, OUYANG C Y, SONG L J, et al. Lithium ion diffusion in Li4+xTi5O12: From ab initio studies[J]. Electrochimica Acta, 2011, 56(17): 6084-6088. doi: 10.1016/j.electacta.2011.04.077
    [14] SHI S Q, LU P, LIU Z Y, et al. Direct calculation of Li-ion transport in the solid electrolyte interphase[J]. Journal of the American Chemical Society, 2012, 134(37): 15476-15487. doi: 10.1021/ja305366r
    [15] MEUNIER V, KEPHART J, ROLAND C, et al. Ab initio investigations of lithium diffusion in carbon nanotube systems[J]. Physical Review Letters, 2002, 88(7): 075506.
    [16] GONZÁLEZ G, ANA M, SANCHEZ V, et al. Molybdenum disulfide intercalates with special transport properties[J]. Molecular Crystals and Liquid Crystals Science and Technology: Section A. Molecular Crystals and Liquid Crystals, 2000, 353(1): 301-308. doi: 10.1080/10587250008025669
    [17] RUI X H, DING N, LIU J, et al. Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material[J]. Electrochimica Acta, 2010, 55(7): 2384-2390. doi: 10.1016/j.electacta.2009.11.096
    [18] ZHOU L J, HOU Z F, WU L M. First-principles study of lithium adsorption and diffusion on graphene with point defects[J]. The Journal of Physical Chemistry C, 2012, 16(41): 21780-21787.
    [19] PERSSON K, SETHURAMAN V A, HARDWICK L J, et al. Lithium diffusion in graphitic carbon[J]. Physics, 2011, 1(8): 1176-1180.
    [20] 林传金, 郑锋, 朱梓忠. 锂离子电池正极材料Li2FeO2的电子结构性质和Li扩散[J]. 物理学报, 2019, 15: 295-302.
    [21] LEUNG K, BUDZIEN J L. Ab initio molecular dynamics simulations of the initial stages of solid-electrolyte interphase formation on lithium ion battery graphitic anodes[J]. Physical Chemistry Chemical Physics, 2010, 12(25): 6583-6586. doi: 10.1039/b925853a
    [22] GAO T H, LU W. Mechanism and effect of thermal degradation on electrolyte ionic diffusivity in Li-ion batteries: A molecular dynamics study[J]. Electrochimica Acta, 2019, 323: 134791. doi: 10.1016/j.electacta.2019.134791
    [23] ZHANG K, LI P, GUO S Y, et al. An Ångström-level d-spacing controlling synthetic route for MoS2 towards stable intercalation of sodium ions[J]. Journal of Materials Chemistry A, 2018, 6(45): 22513-22518. doi: 10.1039/C8TA09066A
    [24] XIAO Y, ZHU Y F, XIANG W, et al. Deciphering an abnormal layered‐tunnel heterostructure induced by chemical substitution for the sodium oxide cathode[J]. Angewandte Chemie International Edition, 2020, 59(4): 1491-1495. doi: 10.1002/anie.201912101
    [25] XIAO Y, WANG P F, YIN Y X, et al. Exposing {010} active facets by multiple-layer oriented stacking nanosheets for high-performance capacitive sodium-ion oxide cathode[J]. Advanced Materials, 2018, 30(40): 1803765. doi: 10.1002/adma.201803765
    [26] BOLLINGER M V, JACOBESEN K W, NORSKOV J K. Atomic and electronic structure of MoS2 nanoparticles[J]. Physrevb, 2003, 67(12): 283-287.
    [27] LAURITSEN J V, NYBERG M, VANG R T, et al. Chemistry of one-dimensional metallic edge states in MoS2 nanoclusters[J]. Nanotechnology, 2003, 14(3): 385-389. doi: 10.1088/0957-4484/14/3/306
    [28] WU C, HUA W, ZHANG Z, et al. Design and synthesis of layered Na2Ti3O7 and tunnel Na2Ti6O13 hybrid structures with enhanced electrochemical behavior for sodium-ion batteries[J]. Advanced Science, 2018, 5(9): 1800519. doi: 10.1002/advs.201800519
    [29] QIU L, XIANG W, TIAN W, et al. Polyanion and cation co-doping stabilized Ni-rich Ni-Co-Al material as cathode with enhanced electrochemical performance for Li-ion battery[J]. Nano Energy, 2019, 63: 103818. doi: 10.1016/j.nanoen.2019.06.014
    [30] XU C L, XIANG W, WU Z G, et al. Constructing a protective pillaring layer by incorporating gradient Mn4+ to stabilize the surface/interfacial structure of LiNi0.815Co0.15Al0.035O2 cathode[J]. ACS Applied Materials & Interfaces, 2018, 10(33): 27821-27830.
    [31] EBNONNASIR A, NARAYANAN B, KODAMBAKA S, et al. Tunable MoS2 bandgap in MoS2-graphene heterostructures[J]. Applied Physics Letters, 2014, 105(3): 031603.
  • 加载中
图(8)
计量
  • 文章访问数:  851
  • HTML全文浏览量:  399
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-24
  • 刊出日期:  2021-04-02

目录

    /

    返回文章
    返回