高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

杂化硅溶胶/有机硅低聚物复合透明超疏水涂层的制备及性能

吕露 王绍华 易红玲 公维光 林珩 郑柏存

吕露, 王绍华, 易红玲, 公维光, 林珩, 郑柏存. 杂化硅溶胶/有机硅低聚物复合透明超疏水涂层的制备及性能[J]. 华东理工大学学报(自然科学版), 2021, 47(2): 147-153. doi: 10.14135/j.cnki.1006-3080.20191202002
引用本文: 吕露, 王绍华, 易红玲, 公维光, 林珩, 郑柏存. 杂化硅溶胶/有机硅低聚物复合透明超疏水涂层的制备及性能[J]. 华东理工大学学报(自然科学版), 2021, 47(2): 147-153. doi: 10.14135/j.cnki.1006-3080.20191202002
LYU Lu, WANG Shaohua, YI Hongling, GONG Weiguang, LIN Heng, ZHENG Baicun. Preparation and Properties of Hybrid Silica Sol/Organsilicon Oligomer Composite Transparent Superhydrophobic Coatings[J]. Journal of East China University of Science and Technology, 2021, 47(2): 147-153. doi: 10.14135/j.cnki.1006-3080.20191202002
Citation: LYU Lu, WANG Shaohua, YI Hongling, GONG Weiguang, LIN Heng, ZHENG Baicun. Preparation and Properties of Hybrid Silica Sol/Organsilicon Oligomer Composite Transparent Superhydrophobic Coatings[J]. Journal of East China University of Science and Technology, 2021, 47(2): 147-153. doi: 10.14135/j.cnki.1006-3080.20191202002

杂化硅溶胶/有机硅低聚物复合透明超疏水涂层的制备及性能

doi: 10.14135/j.cnki.1006-3080.20191202002
详细信息
    作者简介:

    吕露:吕 露(1994-),男,安徽合肥人,硕士生,主要研究方向为纳米功能材料。E-mail:lvlu18696205511@126.com

    通讯作者:

    公维光,E-mail:gongwg@ecust.edu.cn

  • 中图分类号: TQ127.2

Preparation and Properties of Hybrid Silica Sol/Organsilicon Oligomer Composite Transparent Superhydrophobic Coatings

  • 摘要: 以气相纳米二氧化硅、正硅酸乙酯(TEOS)和六甲基二硅氮烷(HMDS)为原料,采用溶胶-凝胶法制备杂化硅溶胶,将γ-(2,3-环氧丙氧)丙基三甲氧基硅烷(KH560)和烷基硅氧烷制备的有机硅低聚物与杂化硅溶胶复合得到透明超疏水涂层,研究了气相纳米二氧化硅、HMDS和KH560用量以及烷基硅氧烷种类对复合涂层性能的影响。结果表明:当气相纳米二氧化硅与TEOS的质量比为0.075,HMDS与TEOS的质量比为0.75,烷基硅氧烷为甲基三乙氧基硅烷(MTES),且KH560和MTES的物质的量之比为0.50,有机硅低聚物与杂化硅溶胶质量比为0.100时,制备的涂层接触角可达165°,具有优异的超疏水性能和良好的附着力、坚固性以及高透光率。

     

  • 图  1  气相纳米二氧化硅与TEOS质量比对杂化硅溶胶涂层疏水性能的影响

    Figure  1.  Effect of mass ratios of nano-fumed silica to TEOS on hydrophobic properties of hybrid silica sol coatings

    图  2  HMDS与TEOS质量比对杂化硅溶胶涂层疏水性能的影响

    Figure  2.  Effect of mass ratio of HMDS to TEOS on hydrophobic property of hybrid silica sol coatings

    图  3  KH560与MTES的物质的量之比对复合涂层性能的影响

    Figure  3.  Effect of molar ratio of KH560 to MTES on properties of composite coatings

    图  4  烷基硅氧烷种类对复合涂层性能的影响

    Figure  4.  Effect of different alkyl siloxanes on properties of composite coatings

    图  5  有机硅低聚物添加量对复合涂层性能的影响

    Figure  5.  Effect of adding amount of organsilicon oligomer on properties of composite coatings

    图  6  气相纳米二氧化硅(a)、杂化硅溶胶(b)、KH560(c)和有机硅低聚物(d)的红外光谱图

    Figure  6.  FT-IR spectra of nano-fumed silica (a), hybrid silica sol (b), KH560 (c) and organosilicon oligomer (d)

    图  7  杂化硅溶胶涂层和复合涂层的SEM图

    Figure  7.  SEM images of hybrid silica sol coatings and composite coatings

    a, b—Hybrid silica sol coating without nano-fumed silica; c, d—m (Nano-fumed silica)∶m (TEOS)=0.075; e, f—m (Organsilicon oligomer)∶m (Hybrid silica sol)=0.100

    图  8  涂层UV-Vis光谱图(a);普通载玻片和涂有复合涂层的载玻片的照片(b)

    Figure  8.  UV-Vis spectra of coatings (a); Photograph of the bare glass and the coated glass (b)

  • [1] NEINHUIS W B. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8. doi: 10.1007/s004250050096
    [2] ZHAO X, LI Y, LI B, et al. Environmentally benign and durable superhydrophobic coatings based on SiO2 nanoparticles and silanes[J]. Journal of Colloid and Interface Science, 2019, 542: 8-14.
    [3] XIE J, HU J, LIN X D, et al. Robust and anti-corrosive PDMS/SiO2, superhydrophobic coatings fabricated on magnesium alloys with different-sized SiO2 nanoparticles[J]. Applied Surface Science, 2018, 457: 870-880.
    [4] SRIRAM S, KUMAR A. Separation of oil-water via porous PMMA/SiO2 nanoparticles superhydrophobic surface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019,563:271-279.
    [5] LYU S, NGUYEN D C, KIM D, et al. Experimental drag reduction study of super-hydrophobic surface with dual-scale structures[J]. Applied Surface Science, 2013, 286: 206-211.
    [6] MULRONEY A T, GUPTA M C. Optically transparent superhydrophobic polydimethylsiloxane by periodic surface microtexture[J]. Surface and Coatings Technology, 2017, 325: 308-317. doi: 10.1016/j.surfcoat.2017.06.066
    [7] LIANG Z, LI W, DONG B, et al. Double-function SiO2-DMS coating with antireflection and superhydrophobic surface[J]. Chemical Physics Letters, 2019, 716: 211-214. doi: 10.1016/j.cplett.2018.12.030
    [8] LIU X, WANG Y, CHEN Z, et al. A self-modification approach toward transparent superhydrophobic glass for rainproofing and superhydrophobic fiberglass mesh for oil-water separation[J]. Applied Surface Science: Part B, 2016, 360: 789-797. doi: 10.1016/j.apsusc.2015.11.069
    [9] GE D, YANG L, ZHANG Y, et al. Transparent and superamphiphobic surfaces from one‐step spray coating of stringed silica nanoparticle/sol solutions[J]. Particle & Particle Systems Characterization, 2014, 31(7): 763-770.
    [10] LIN J, CHEN H, FEI T, et al. Highly transparent superhydrophobic organic-inorganic nanocoating from the aggregation of silica nanoparticles[J]. Colloids and Surfaces: A. Physicochemical and Engineering Aspects, 2013, 421: 51-62.
    [11] LI Y, MEN X, ZHU X, et al. One-step spraying to fabricate nonfluorinated superhydrophobic coatings with high transparency[J]. Journal of Materials Science, 2016, 51(5): 2411-2419. doi: 10.1007/s10853-015-9552-5
    [12] FEI T, CHEN H, LIN J. Transparent superhydrophobic films possessing high thermal stability and improved moisture resistance from the deposition of MTMS-based aerogels[J]. Colloids and Surfaces: A. Physicochemical and Engineering Aspects, 2014, 443: 255-264.
    [13] LIU X, XU Y, BEN K, et al. Transparent, durable and thermally stable PDMS-derived superhydrophobic surfaces[J]. Applied Surface Science, 2015, 339: 94-101. doi: 10.1016/j.apsusc.2015.02.157
    [14] LI Y, ZHANG Z, WANG M, et al. Environmentally-safe, substrate-independent and repairable nanoporous coatings: Large-scale preparation, high transparency and antifouling property[J]. Journal of Materials Chemistry A, 2017, 38(5): 20277-20288.
    [15] XUE F, JIA D M, LI Y, et al. Facile preparation of a mechanically robust superhydrophobic acrylic polyurethane coating[J]. Journal of Materials Chemistry A, 2015, 26(3): 13856-13863. doi: 10.1039/C5TA02780B
    [16] SU Q, WEN F, HUANG Y, et al. Abrasion resistant semitransparent self-cleaning coatings based on porous silica microspheres and polydimethylsiloxane[J]. Ceramics International, 2019, 45(1): 401-408.
    [17] HUANG W H, LIN C S. Robust superhydrophobic transparent coatings fabricated by a low-temperature sol-gel process[J]. Applied Surface Science, 2014, 305: 702-709. doi: 10.1016/j.apsusc.2014.03.179
    [18] HU C, CHEN W H, LI T, et al. Constructing non-fluorinated porous superhydrophobic SiO2-based films with robust mechanical properties[J]. Colloids and Surfaces: A. Physicochemical and Engineering Aspects, 2018, 551: 65-73. doi: 10.1016/j.colsurfa.2018.04.059
    [19] YANG X F, LIU J, CHEN Q, et al. A low temperature vulcanized transparent silane modified epoxy resins for led filament bulb package[J]. Chinese Journal of Polymer Science, 2018, 36: 649-654.
    [20] 黎强科, 曾显华, 赵燕, 等. 羟基封端的有机硅低聚物的合成[J]. 化工新型材料, 2012(8): 33-35.
    [21] 李鹏浩, 李培礼, 朱广军. 有机硅改性水性醇酸树脂的制备及性能研究[J]. 现代化工, 2016, 36(4): 137-140.
    [22] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. doi: 10.1039/tf9444000546
  • 加载中
图(8)
计量
  • 文章访问数:  1699
  • HTML全文浏览量:  961
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-02
  • 网络出版日期:  2020-06-05
  • 刊出日期:  2021-04-02

目录

    /

    返回文章
    返回