高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

MOFs与碳纳米管双重改性渗透汽化复合膜及其性能研究

谢博远 马晓华 许振良

谢博远, 马晓华, 许振良. MOFs与碳纳米管双重改性渗透汽化复合膜及其性能研究[J]. 华东理工大学学报(自然科学版), 2020, 46(5): 608-612. doi: 10.14135/j.cnki.1006-3080.20190809004
引用本文: 谢博远, 马晓华, 许振良. MOFs与碳纳米管双重改性渗透汽化复合膜及其性能研究[J]. 华东理工大学学报(自然科学版), 2020, 46(5): 608-612. doi: 10.14135/j.cnki.1006-3080.20190809004
XIE Boyuan, MA Xiaohua, XU Zhenliang. MOFs and Carbon Nanotubes Double Modified Pervaporation Composite Membrane and Its Properties[J]. Journal of East China University of Science and Technology, 2020, 46(5): 608-612. doi: 10.14135/j.cnki.1006-3080.20190809004
Citation: XIE Boyuan, MA Xiaohua, XU Zhenliang. MOFs and Carbon Nanotubes Double Modified Pervaporation Composite Membrane and Its Properties[J]. Journal of East China University of Science and Technology, 2020, 46(5): 608-612. doi: 10.14135/j.cnki.1006-3080.20190809004

MOFs与碳纳米管双重改性渗透汽化复合膜及其性能研究

doi: 10.14135/j.cnki.1006-3080.20190809004
基金项目: 国家自然科学基金(21978081)
详细信息
    作者简介:

    谢博远(1993-),男,河南郑州人,硕士生,研究方向为功能膜的制备及应用等

    通讯作者:

    马晓华,E-mail:xiaohuama@ecust.edu.cn

  • 中图分类号: TQ 028.8

MOFs and Carbon Nanotubes Double Modified Pervaporation Composite Membrane and Its Properties

  • 摘要: 金属有机骨架结构(MOFs)是一种新型多孔材料,在催化、分离等领域有着很好的应用前景。使用MOFs和碳纳米管(CNTs)与聚乙烯醇(PVA)制备渗透汽化复合膜,并进行乙醇-水和异丙醇-水的渗透汽化实验。实验结果表明:MOFs及CNTs可有效改变PVA渗透汽化膜的结构和性能;随着MOFs含量的增加,膜的渗透通量增加,分离选择性降低;随着CNTs含量的增加,其在膜表面的分散性下降,分离效果变差。在合适的MOFs和CNTs含量下,PVA渗透汽化复合膜具有较好的分离效果。

     

  • 图  1  NH2-MIL-101(Al) SEM图

    Figure  1.  SEM photo of NH2-MIL-101(Al))

    图  2  CNTs-MOFs/PVA渗透汽化复合膜的SEM图

    Figure  2.  SEM photos of CNTs-MOFs/PVA pervaporation composite membranes

    图  3  CM2交联处理前(a)后(b)红外透射图谱

    Figure  3.  Infrared transmission spectra of CM2 before (a) and after (b) crosslinking treatment

    图  4  渗透汽化实验结果

    Figure  4.  Results of pervaporation experiment

    图  5  40 ℃时CNTs-MOFs/PVA渗透汽化复合膜分离异丙醇水溶液(w=90%)实验结果

    Figure  5.  Experimental result of CNTs-MOFs/PVA pervaporation composite membrane on isopropanol solution (w=90%) at 40 ℃

    图  6  CNTs-MOFs/PVA渗透汽化复合膜分离异丙醇水溶液(w=90%)的通量-温度线性拟合

    Figure  6.  Linear fit of flux and temperature of CNTs-MOFs/PVA pervaporation composite membrane for isopropanol solution (w=90%)

    表  1  涂层溶液的组成

    Table  1.   Composition of coating solutions

    Composite membranew(CNTs)/%w(MOFs)/%w(PVA)/%
    CM10108
    CM2378
    CM3558
    CM4738
    下载: 导出CSV

    表  2  CNTs-MOFs/PVA渗透汽化复合膜的水接触角

    Table  2.   Water contact angle of CNTs-MOFs/PVA pervaporation composite membranes

    Composite membraneWater contact angle/(°)
    CM197.7
    CM296.9
    CM394.1
    CM490.3
    下载: 导出CSV

    表  3  一些官能团的振动频率

    Table  3.   Vibrational frequency of given functional group

    Functional groupFrequency/cm−1
    −OH3 600~3 200
    C=O1 850~1 680
    C−H2 950~2 850
    C−O1 200~1 025
    下载: 导出CSV
  • [1] 侯影飞, 许杨, 李海平, 等. 渗透汽化膜改性技术研究进展[J]. 膜科学与技术, 2018, 38(1): 136-142.
    [2] 丁建武, 张伟东. 渗透汽化膜分离技术的工业应用进展[J]. 船电技术, 2017, 37(10): 68-72. doi: 10.3969/j.issn.1003-4862.2017.10.016
    [3] ROWSELL J L C, SPENCER E C, ECKERT J, et al. Gas adsorption sites in a large-pore metal-organic framework[J]. Science, 2005, 309(5739): 1350-1354.
    [4] MA X H, GUO H, YANG Z, et al. Carbon nanotubes enhance permeability of ultrathin polyamide rejection layers[J]. Journal of Membrane Science, 2019, 570: 139-145.
    [5] 王杰, 李梅生, 周守勇, 等. 有机-无机纳米复合渗透汽化脱水膜研究进展[J]. 化工新型材料, 2018, 46(2): 8-13.
    [6] MORIGAMI Y, KONDO M, ABE J, et al. The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane[J]. Separation and Purification Technology, 2001, 25: 251-260. doi: 10.1016/S1383-5866(01)00109-5
    [7] QIU S L, XUE M, ZHU G S. Metal-organic framework membranes: From synthesis to separation application[J]. Chemical Society Reviews, 2014, 43: 6116-6140. doi: 10.1039/C4CS00159A
    [8] MA X H, XU Z L, LIU Y, et al. Preparation and characterization of PFSA-PVA-SiO2/PVA/PAN difunctional hollow fiber composite membranes[J]. Journal of Membrane Science, 2010, 360: 315-322. doi: 10.1016/j.memsci.2010.05.031
    [9] MA X H, XU Z L, WU F, et al. PFSA-TiO2(or Al2O3)-PVA/PVA/PAN difunctional hollow fiber composite membranes prepared by dip-coating method[J]. Iranian Polymer Journal, 2012, 21: 31-41. doi: 10.1007/s13726-011-0007-9
    [10] MA X H, YANG Z, YAO Z K, et al. A facile preparation of novel positively charged MOF/chitosan nanofiltration membranes[J]. Journal of Membrane Science, 2017, 525: 269-276. doi: 10.1016/j.memsci.2016.11.015
    [11] ZHANG Q G, LIU Q L, ZHU A M, et al. Pervaporation performance of quaternized poly(vinyl alcohol) and its cross-linked membranes for the dehydration of ethanol[J]. Journal of Membrane Science, 2009, 335: 68-75. doi: 10.1016/j.memsci.2009.02.039
    [12] DE DECKER J, DE CLERCQ J, VERMEIR P, et al. Functionalized metal-organic-framework CMPO@MIL-101(Cr) as a stable and selective rare earth adsorbent[J]. Journal of Materials Science, 2016, 51(10): 5019-5026. doi: 10.1007/s10853-016-9807-9
    [13] XIE H R, JI C H, XUE S M, et al. Enhanced pervaporation performance of SA-PFSA/ceramic hybrid membranes for ethanol dehydration[J]. Separation and Purification Technology, 2018, 206: 218-225. doi: 10.1016/j.seppur.2018.05.060
    [14] ZHANG X, WANG M, JI C H, et al. Multilayer assembled CS-PSS/ceramic hollow fiber membranes for pervaporation dehydration[J]. Separation and Purification Technology, 2018, 203: 84-92. doi: 10.1016/j.seppur.2018.04.006
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  842
  • HTML全文浏览量:  549
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-09
  • 网络出版日期:  2020-07-15
  • 刊出日期:  2020-10-30

目录

    /

    返回文章
    返回