高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

基于能量循环再生系统酶法生产谷胱甘肽

张星 崔向伟 李宗霖 李志敏

张星, 崔向伟, 李宗霖, 李志敏. 基于能量循环再生系统酶法生产谷胱甘肽[J]. 华东理工大学学报(自然科学版), 2020, 46(5): 688-693. doi: 10.14135/j.cnki.1006-3080.20190806001
引用本文: 张星, 崔向伟, 李宗霖, 李志敏. 基于能量循环再生系统酶法生产谷胱甘肽[J]. 华东理工大学学报(自然科学版), 2020, 46(5): 688-693. doi: 10.14135/j.cnki.1006-3080.20190806001
ZHANG Xing, CUI Xiangwei, LI Zonglin, LI Zhimin. Enzymatic Synthesis of Glutathione Based on Energy Regeneration System[J]. Journal of East China University of Science and Technology, 2020, 46(5): 688-693. doi: 10.14135/j.cnki.1006-3080.20190806001
Citation: ZHANG Xing, CUI Xiangwei, LI Zonglin, LI Zhimin. Enzymatic Synthesis of Glutathione Based on Energy Regeneration System[J]. Journal of East China University of Science and Technology, 2020, 46(5): 688-693. doi: 10.14135/j.cnki.1006-3080.20190806001

基于能量循环再生系统酶法生产谷胱甘肽

doi: 10.14135/j.cnki.1006-3080.20190806001
基金项目: 上海市科委产学研合作项目(13DZ1930202)
详细信息
    作者简介:

    张星:张 星(1992—),男,安徽人,博士生,主要从事酶筛选和级联反应催化的研究。E-mail:xxgzhang@163.com

    通讯作者:

    李志敏,E-mail:lizm@ecust.edu.cn

  • 中图分类号: Q814.2

Enzymatic Synthesis of Glutathione Based on Energy Regeneration System

  • 摘要: 以多聚磷酸(polyP)为能量供体,通过构建双酶级联反应,以及偶联多聚磷酸激酶(PPK)和谷胱甘肽双功能合成酶(GshF),酶法合成了谷胱甘肽(GSH)。对GshF和PPK诱导表达条件进行了优化,表明低温18 °C有利于蛋白的可溶表达。将GshF和PPK纯化后,建立纯酶反应系统,对反应条件进行优化,结果表明,当polyP和MgCl2的浓度比为30 : 45、腺苷二磷酸(ADP)浓度为0.5 mmol/L时,反应效率较高;45 °C为反应最优温度;在PPK质量浓度为4 g/L,GshF质量浓度为1 g/L时,3 h内GSH产量达到了(58 ± 3.3)mmol/L。

     

  • 图  1  诱导温度对(a)GshF和(b)PPK表达的影响

    Figure  1.  Effect of induced temperatures on the expression of (a) GshF and (b) PPK

    Lane M—Protein marker; Lane C—Control (cell containing pET28a); The temperatures, and precipitate or supernatant of cell lysates are indicated on the top of lanes; Arrows indicates the band of enzymes

    图  2  GshF和PPK的纯化

    Figure  2.  Purification of GshF and PPK

    Lane M—Protein marker; Lane 1—GshF; Lane 2—PPK

    图  3  GshF和PPK偶联合成GSH

    Figure  3.  GSH synthesis by coupling GshF and PPK

    图  4  不同polyP/MgCl2浓度比对GSH合成的影响

    Figure  4.  Effect of the concentration ratio of polyP to MgCl2 on the synthesis of GSH

    图  5  不同ADP浓度对GSH合成的影响

    Figure  5.  Effect of the concentration of ADP on the synthesis of GSH

    图  6  温度对GSH合成的影响

    Figure  6.  Effect of temperature on the synthesis of GSH

    图  7  PPK/GshF酶比对GSH合成的影响

    Figure  7.  Effect of ratio of PPK to GshF on the synthesis of GSH

  • [1] WU G Y, FANG Y Z, YANG S, et al. Glutathione metabolism and its implications for health[J]. Journal of Nutrition, 2004, 134(3): 489-492. doi: 10.1093/jn/134.3.489
    [2] TOWNSEND D M, TEW K D, TAPIERO H. The importance of glutathione in human disease[J]. Biomedicine & Pharmacotherapy, 2003, 57(3): 145-155.
    [3] POPHALY S D, SINGH R, POPHALY S D, et al. Current status and emerging role of glutathione in food grade lactic acid bacteria[J]. Microbial Cell Factories, 2012, 11: 114-127. doi: 10.1186/1475-2859-11-114
    [4] ZHANG J, QUAN C, WANG C, et al. Systematic manipulation of glutathione metabolism in Escherichia coli for improved glutathione production[J]. Microbial Cell Factories, 2016, 15: 38-49. doi: 10.1186/s12934-016-0439-1
    [5] LI Y, WEI G, CHEN J. Glutathione: A review on biotechnological production[J]. Applied Microbiology & Biotechnology, 2004, 66(3): 233-242.
    [6] MEISTER A, ANDERSON M E. Glutathione[J]. Annual Review of Biochemistry, 1983, 52: 711-760. doi: 10.1146/annurev.bi.52.070183.003431
    [7] JANOWIAK B E, GRIFFITH O W. Glutathione synthesis in Streptococcus agalactiae. One protein accounts for gamma-glutamylcysteine synthetase and glutathione synthetase activities[J]. Journal of Biological Chemistry, 2005, 280(12): 11829-11839. doi: 10.1074/jbc.M414326200
    [8] 王爱琪, 张星, 吴辉, 等. 谷胱甘肽双功能合成酶固定化研究[J]. 华东理工大学学报(自然科学版), 2019, 45(1): 81-86.
    [9] TZENG C M, KORNBERG A. The multiple activities of polyphosphate kinase of Escherichia coli and their subunit structure determined by radiation target analysis[J]. Journal of Biological Chemistry, 2000, 275(6): 3977-3983. doi: 10.1074/jbc.275.6.3977
    [10] ANDEXERJ N, RICHTER M. Emerging enzymes for ATP regeneration in biocatalytic processes[J]. ChemBioChem, 2015, 16(3): 380-386. doi: 10.1002/cbic.201402550
    [11] IWAMOTO S, MOTOMURA K, SHINODA Y, et al. Use of an Escherichia coli recombinant producing thermostable polyphosphate kinase as an ATP regenerator to produce fructose 1,6-diphosphate[J]. Applied and Environmental Microbiology, 2007, 73(17): 5676-5678. doi: 10.1128/AEM.00278-07
    [12] ZHANG X, WU H, HUANG B, et al. One-pot synthesis of glutathione by a two-enzyme cascade using a thermophilic ATP regeneration system[J]. Journal of Biotechnology, 2017, 241: 163-169. doi: 10.1016/j.jbiotec.2016.11.034
    [13] CAO H, NIE K, LI C, et al. Rational design of substrate binding pockets in polyphosphate kinase for use in cost-effective ATP-dependent cascade reactions[J]. Applied Microbiology and Biotechnology, 2017, 101(13): 5325-5332. doi: 10.1007/s00253-017-8268-7
    [14] YU J, TAO R, SHEN Z, et al. Enzymatic production of glutathione by bifunctional γ-glutamylcysteine synthetase/glutathione synthetase coupled with in vitro acetate kinase-based ATP generation[J]. Applied Biochemistry & Biotechnology, 2016, 180(7): 1446-1455.
  • 加载中
图(7)
计量
  • 文章访问数:  2733
  • HTML全文浏览量:  1249
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-06
  • 网络出版日期:  2019-12-13
  • 刊出日期:  2020-10-30

目录

    /

    返回文章
    返回