高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

位阻和电子效应对位阻型二芳基乙烯光响应性能的影响

李萌祺 张志鹏 朱为宏

李萌祺, 张志鹏, 朱为宏. 位阻和电子效应对位阻型二芳基乙烯光响应性能的影响[J]. 华东理工大学学报(自然科学版), 2020, 46(5): 642-652. doi: 10.14135/j.cnki.1006-3080.20190505001
引用本文: 李萌祺, 张志鹏, 朱为宏. 位阻和电子效应对位阻型二芳基乙烯光响应性能的影响[J]. 华东理工大学学报(自然科学版), 2020, 46(5): 642-652. doi: 10.14135/j.cnki.1006-3080.20190505001
LI Mengqi, ZHANG Zhipeng, ZHU Weihong. Steric and Electronic Effects on the Light-Responsive Performance of Sterically-Hindered Diarylethenes[J]. Journal of East China University of Science and Technology, 2020, 46(5): 642-652. doi: 10.14135/j.cnki.1006-3080.20190505001
Citation: LI Mengqi, ZHANG Zhipeng, ZHU Weihong. Steric and Electronic Effects on the Light-Responsive Performance of Sterically-Hindered Diarylethenes[J]. Journal of East China University of Science and Technology, 2020, 46(5): 642-652. doi: 10.14135/j.cnki.1006-3080.20190505001

位阻和电子效应对位阻型二芳基乙烯光响应性能的影响

doi: 10.14135/j.cnki.1006-3080.20190505001
基金项目: 国家基金委重点项目(201636002)
详细信息
    作者简介:

    李萌祺(1991-),男,上海人,博士生,主要从事光致变色染料的合成与性能研究。E-mail:mengqi15@126.com

    通讯作者:

    张志鹏,zhipengzhang@ecust.edu.cn

Steric and Electronic Effects on the Light-Responsive Performance of Sterically-Hindered Diarylethenes

  • 摘要: 传统二芳基乙烯体系由于平行与反平行构象异构体无法分离,闭环量子效率通常无法超过50% (摩尔分数)。通过增加位阻效应可以有效阻断两个异构体之间的转化,有可能得到较高的闭环量子效率。本文系统地比较了侧端位阻效应,并通过引入供电子的对甲氧基苯基基团和吸电子的吡啶基团,分析了位阻型二芳基乙烯体系光响应性能的影响。研究发现在噻吩β位引入甲基取代基的目标化合物13,开环的平行与反平行异构体可成功实现分离,并且两者反平行异构体闭环量子效率均突破传统体系50% (摩尔分数)的限制;但目标化合物13对应的闭环体1c3c,所引入的甲基降低了其热稳定性。与目标化合物13产生鲜明对比的是,由于氢原子较小的位阻效应和可能的分子内氢键的作用,目标化合物2c4c则具有良好的热稳定性。另外,噻吩取代基的电子效应也会影响热稳定性,含有吸电子基团吡啶的目标化合物1c热衰减速率明显高于含供电子基团对甲氧基苯基的化合物3c

     

  • 图  1  目标分子1a1p以及2o2c的合成路线

    Figure  1.  Synthetic route of target molecules 1a and 1p as well as 2o and 2c

    图  2  目标化合物1在C6D6中的1H-NMR谱(400 MHz, 293 K)

    Figure  2.  1H-NMR spectra (400 MHz, 293 K) of target compound 1 in C6D6

    图  3  目标化合物2在tetrahydrofuran-d8中的1H-NMR谱(400 MHz, 293 K)

    Figure  3.  1H-NMR spectra (400 MHz, 293 K) of compound 2 in tetrahydrofuran-d8

    图  4  目标化合物3在氘代四氢呋喃中的1H-NMR谱(400 MHz, 293 K)

    Figure  4.  1H-NMR spectra (400 MHz, 293 K) of compound 3 in tetrahydrofuran -d8

    图  5  目标化合物4在氘代四氢呋喃中的1H-NMR谱(400 MHz, 293 K)

    Figure  5.  1H-NMR spectra (400 MHz, 293 K) of compound 4 in tetrahydrofuran -d8

    图  6  (a) 1a、(b) 2o、(c) 3a和(d) 4o的四氢呋喃溶液在紫外光(λ = (313 ± 10) nm)照射下吸收和荧光光谱的变化。荧光的激发波长分别为(a) 361 nm、(b) 366 nm、(c) 309 nm和(d) 323 nm。插图展示了颜色和荧光在紫外光(λ = (313 ± 10) nm)和可见光(λ > 470 nm)照射下的变化。图中箭头向上和向下分别表示受到光照后光谱上升或下降的趋势

    Figure  6.  Absorption and fluorescence changes of (a) 1a, (b) 2o, (c) 3a, and (d) 4o in tetrahydrofuran upon UV irradiation at (313 ± 10) nm. Excitation for fluorescence is set at (a) 361 nm, (b) 366 nm, (c) 309 nm and (d) 323 nm, respectively. Inset images show the color and emission changes triggered by UV (λ = (313 ± 10) nm) and visible (λ > 470 nm) light. The arrows up and down indicate the increase and decrease tendency of the spectra upon irradiation by light, respectively

    图  7  (a) 1a1p (2.09 × 10−5 mol/dm3)和(b) 3a3p (2.14 × 10−5 mol/dm3)在四氢呋喃溶液中紫外可见吸收和荧光光谱对比。插图为1p3p在紫外光(λ = (313 ± 10) nm,0.21 mW/cm2,6 min)照射前后的变化

    Figure  7.  UV-vis absorption and fluorescence spectra of (a) 1a and 1p (2.09 × 10−5 mol/dm3) and (b) 3a and 3p (2.14 × 10−5 mol/dm3) in tetrahydrofuran. Insert images show spectra changes of 1p and 3p upon irradiation by UV light (λ = (313 ± 10) nm, 0.21 mW/cm2) for 6 min

    图  8  293 K下目标化合物1c(a)和3c(b)在不同溶剂中的衰减曲线

    Figure  8.  Decay curves of compound 1c(a) and 3c(b) in different solvents at 293 K

    图  9  目标化合物1~4闭环体在乙腈中的热稳定性对比

    Figure  9.  Comparison of the thermal stability of closed form of target compounds 1~4 in acetonitrile

    表  1  目标化合物1~4的开环体的平行与反平行异构体和闭环体的化学结构式

    Table  1.   Chemical structures of parallel and anti-parallel conformer of open form as well as closed form of the target compounds 1~4

    Open formClosed form
    ap-Conformerp-Conformer
    下载: 导出CSV

    表  2  目标化合物1~4在四氢呋喃溶液中的光谱数据

    Table  2.   Spectroscopic data of compound 1~4 in tetrahydrofuran solution

    Compoundλmaxa)/nmεmax/(103 mol−1·dm3·cm−1)λema) /nmΦo-cb) /%Φc-ob) /%CRc) /%
    1a29648.85195698
    1p29152.5482
    1c5617.011.2>99
    2o29455.04803497
    2c64910.30.1d)>99
    3a28853.760068>99
    3p28757.2590
    3c5699.56519.0>99
    4o29559.258432>99
    4c65411.81.1>99
    a) Typical absorption (λmax) and emission maxima (λem) of o-form in UV region and c- form in the visible region, respectively; b) Quantum yields of photocyclization (Φo-c) at 313 nm and cycloreversion (Φc-o) at 517 nm; c) Conversion ratio (CR) from o- to c- form (irradiation at λ = 313 nm) or from c- to o- form (irradiation at λ > 470 nm); d) Quantum yields of cycloreversion (Φc-o) at 562 nm
    下载: 导出CSV

    表  3  293 K下目标化合物1c在不同溶剂中的热衰减动力学数据

    Table  3.   Spectrokinetic data of thermal decay for compound 1c in various solvents at 293 K

    Solventτ1/2/sk/10−5 s−1A0
    Cyclohexane2 33629.710.829 7
    Toluene1 34451.780.452 9
    Tetrahydrofuran918.673.780.863 1
    Methylene chloride722.593.890.732 1
    Acetonitrile393.2174.00.767 9
    Methanol371.0186.10.817 3
    下载: 导出CSV

    表  4  293 K下目标化合物3c在不同溶剂中的热衰减动力学数据

    Table  4.   Spectrokinetic data of thermal decay for compound 3c in various solvents at 293 K

    Solventτ1/2/sk /10−5 s−1A0
    Toluene53 6481.2920.629 6
    Tetrahydrofuran53 2131.3020.669 7
    Acetonitrile35 3891.9580.592 0
    下载: 导出CSV
  • [1] DÜRR H, BOUAS-LAURENT H. Photochromism: Molecules and Systems[M]. Amsterdam: Elsevier, 2003.
    [2] TIAN H, ZHANG J. Photochromic Materials: Preparation, Properties and Applications[M]. Weinheim: John Wiley & Sons, 2016.
    [3] 刘秀军, 马骧. 光响应型主客体超分子聚合物[J]. 华东理工大学学报(自然科学版), 2019, 45(4): 517-527.
    [4] IRIE M. Diarylethenes for memories and switches[J]. Chemical Reviews, 2000, 100(5): 1685-1716. doi: 10.1021/cr980069d
    [5] JIN-NOUCHI H, TAKESHITA M. Syntheses and fullydiastereospecific photochromic reactions of thiophenophan-1-enes with chiral bridges[J]. Chemistry: A European Journal, 2012, 18(31): 9638-9644. doi: 10.1002/chem.201103970
    [6] KUNDU P K, DAS S, AHRENS J, et al. Controlling the lifetimes of dynamic nanoparticle aggregates by spiropyran functionalization[J]. Nanoscale, 2016, 8(46): 19280-19286. doi: 10.1039/C6NR05959G
    [7] HAN M, LUO Y, DAMASCHKE B, et al. Light-controlled interconversion between a self-assembled triangle and a rhombicuboctahedral sphere[J]. Angewandte Chemie International Edition, 2016, 55(1): 445-449. doi: 10.1002/anie.201508307
    [8] HAN M, MICHEL R, HE B, et al. Light-triggered guest uptake and release by a photochromic coordination cage[J]. Angewandte Chemie International Edition, 2013, 52(4): 1319-1323. doi: 10.1002/anie.201207373
    [9] YOKOYAMA S, HIROSE T, MATSUDA K. Effects of alkyl chain length and hydrogen bonds on the cooperative self-assembly of 2-thienyl-type diarylethenes at a liquid/highly oriented pyrolytic graphite (hopg) interface [J]. Chemistry: A European Journal, 2015, 21(39): 13569-13576. doi: 10.1002/chem.201500707
    [10] ZHENG Z G, LI Y, BISOYI H K, et al. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light[J]. Nature, 2016, 531(7594): 352-356. doi: 10.1038/nature17141
    [11] WANG L, DONG H, LI Y, et al. Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer[J]. Advanced Materials, 2015, 27(12): 2065-2069. doi: 10.1002/adma.201405690
    [12] GEMAYEL M E, BORJESSON K, HERDER M, et al. Optically switchable transistors by simple incorporation of photochromic systems into small-molecule semiconducting matrices[J]. Nature Communications, 2015, 6: 6330-6337. doi: 10.1038/ncomms7330
    [13] WÖLL D, FLORS C. Super-resolution fluorescence imaging for materials science[J]. Small Methods, 2017, 1(10): 1700191. doi: 10.1002/smtd.201700191
    [14] IRIE M, FUKAMINATO T, MATSUDA K, et al. Photochromism of diarylethene molecules and crystals: Memories, switches, and actuators[J]. Chemical Reviews, 2014, 114(24): 12174-12277. doi: 10.1021/cr500249p
    [15] SHIZUKA T, SEIYA K, TSUYOSHI K, et al. Extraordinarily high thermal stability of the closed-ring isomer of 1, 2-bis(5-methyl-2-phenylthiazol-4-yl) perfluorocyclopentene[J]. Chemistry Letters, 2003, 32(10): 892-893. doi: 10.1246/cl.2003.892
    [16] HANAZAWA M, SUMIYA R, HORIKAWA Y, et al. Thermally irreversible photochromic systems: Reversible photocyclization of 1, 2-bis(2-methylbenzo[b]thiophen-3-yl)perfluorocyclocoalkene derivatives[J]. Journal of the Chemical Society, Chemical Communications, 1992(3): 206-207. doi: 10.1039/c39920000206
    [17] CHAN J C H, LAM W H, YAM V W W. A highly efficient silole-containing dithienylethene with excellent thermal stability and fatigue resistance: A promising candidate for optical memory storage materials[J]. Journal of the American Chemical Society, 2014, 136(49): 16994-16997. doi: 10.1021/ja5101855
    [18] SUZUKI K, UBUKATA T, YOKOYAMA Y. Dual-mode fluorescence switching of photochromic bisthiazolylcoumarin[J]. Chemical Communications, 2012, 48(5): 765-767. doi: 10.1039/C1CC16516J
    [19] JEONG Y C, GAO C, LEE I S, et al. The considerable photostability improvement of photochromic terarylene by sulfone group[J]. Tetrahedron Letters, 2009, 50(37): 5288-5290. doi: 10.1016/j.tetlet.2009.07.028
    [20] TIAN H, CHEN B, TU H Y, et al. Novel bisthienylethene-based photochromic tetraazaporphyrin with photoregulating luminescence[J]. Advanced Materials, 2002, 14(12): 918-923. doi: 10.1002/1521-4095(20020618)14:12<918::AID-ADMA918>3.0.CO;2-Y
    [21] LI W, JIAO C, LI X, et al. Separation of photoactive conformers based on hindered diarylethenes: Efficient modulation in photocyclization quantum yields[J]. Angewandte Chemie International Edition, 2014, 53(18): 4603-4607. doi: 10.1002/anie.201310438
    [22] ZHU W, YANG Y, METIVIER R, et al. Unprecedented stability of a photochromic bisthienylethene based on benzobisthiadiazole as an ethene bridge[J]. Angewandte Chemie International Edition, 2011, 50(46): 10986-10990. doi: 10.1002/anie.201105136
    [23] YANG Y, XIE Y, ZHANG Q, et al. Aromaticity-controlled thermal stability of photochromic systems based on a six-membered ring as ethene bridges: Photochemical and kinetic studies[J]. Chemistry: A European Journal, 2012, 18(37): 11685-11694. doi: 10.1002/chem.201200354
    [24] FUKUMOTO S, NAKASHIMA T, KAWAI T. Photon-quantitative reaction of a dithiazolylarylene in solution[J]. Angewandte Chemie International Edition, 2011, 50(7): 1565-1568. doi: 10.1002/anie.201006844
    [25] WALKO M, FERINGA B L. The isolation and photochemistry of individual atropisomers of photochromic diarylethenes[J]. Chemical Communications, 2007, 43(17): 1745-1747.
    [26] LI W, CAI Y, LI X, et al. Sterically hindered diarylethenes with a benzobis(thiadiazole) bridge: Photochemical and kinetic studies[J]. Journal of Materials Chemistry C, 2015, 3(33): 8665-8674. doi: 10.1039/C5TC01796C
    [27] CHEN S, YANG Y, WU Y, et al. Multi-addressable photochromic terarylene containing benzo[b]thiophene-1, 1-dioxide unit as ethene bridge: Multifunctional molecular logic gates on unimolecular platform[J]. Journal of Materials Chemistry, 2012, 22(12): 5486-5494. doi: 10.1039/c2jm14973g
    [28] 夏玮, 沈艳红, 付迪, 等. 核磁共振氢谱法定性鉴定甘露聚糖肽[J]. 华东理工大学学报(自然科学版), 2016, 42(4): 508-512, 551.
    [29] UCHIDA K, TSUCHIDA E, NAKAMURA S, et al. Photochromic reactions of diarylethenes with isopropyl groups[J]. Molecular Crystals and Liquid Crystals Science and Technology: Section A. Molecular Crystals and Liquid Crystals, 2000, 345(1): 9-14. doi: 10.1080/10587250008023887
    [30] 王煜, 王杰, 张凯强, 等. 能源化工新材料热致变色水凝胶在智能窗上的应用[J]. 华东理工大学学报(自然科学版), 2018, 44(1): 1-8.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  2164
  • HTML全文浏览量:  1058
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-05
  • 网络出版日期:  2020-04-13
  • 刊出日期:  2020-10-30

目录

    /

    返回文章
    返回