高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

碱性溶液体系制备磷酸锂结晶过程优化

李丽君 刘程琳 宋兴福 于建国

李丽君, 刘程琳, 宋兴福, 于建国. 碱性溶液体系制备磷酸锂结晶过程优化[J]. 华东理工大学学报(自然科学版), 2020, 46(5): 598-607. doi: 10.14135/j.cnki.1006-3080.20190430003
引用本文: 李丽君, 刘程琳, 宋兴福, 于建国. 碱性溶液体系制备磷酸锂结晶过程优化[J]. 华东理工大学学报(自然科学版), 2020, 46(5): 598-607. doi: 10.14135/j.cnki.1006-3080.20190430003
LI Lijun, LIU Chenglin, SONG Xingfu, YU Jianguo. Optimization of Crystallization Process for Preparation of Lithium Phosphate in Alkaline Solution System[J]. Journal of East China University of Science and Technology, 2020, 46(5): 598-607. doi: 10.14135/j.cnki.1006-3080.20190430003
Citation: LI Lijun, LIU Chenglin, SONG Xingfu, YU Jianguo. Optimization of Crystallization Process for Preparation of Lithium Phosphate in Alkaline Solution System[J]. Journal of East China University of Science and Technology, 2020, 46(5): 598-607. doi: 10.14135/j.cnki.1006-3080.20190430003

碱性溶液体系制备磷酸锂结晶过程优化

doi: 10.14135/j.cnki.1006-3080.20190430003
基金项目: 国家自然科学基金项目(51574126);国家重点研发计划项目(2017YFB0603104)
详细信息
    作者简介:

    李丽君(1993-),女,湖南长沙人,硕士生,主要研究方向为反应结晶。E-mail:lijun7li@163.com

    通讯作者:

    于建国,E-mail:jgyu@ecust.edu.cn

  • 中图分类号: TQ127.2

Optimization of Crystallization Process for Preparation of Lithium Phosphate in Alkaline Solution System

  • 摘要: 鉴于锂辉石中低温碱浸技术浸出液中锂浓度低、杂质离子浓度高、碳酸锂结晶难等问题,测定了磷酸锂在碱性体系中的溶解度;系统研究了磷酸锂反应结晶过程中多工艺参数对磷酸锂收率和粒径的影响;着重考察了K、Si、Al这3种常见杂质元素对磷酸锂粒径和形貌的影响,认为杂质离子的作用机理为离子选择性吸附在晶面和离子嵌入晶格的共同作用。采用中心复合设计(CCD)响应曲面法优化工艺参数,当反应温度为80 ℃,锂离子初始质量浓度为1.60 g/L,磷酸钠用量为130%(即理论化学计量数的1.3倍),加料速率为10 mL/min时,得到晶体产物收率和平均粒径的预测值分别为97.37%和18.57 μm,相应的实验值分别为96.85%和18.70 μm。预测值与实验值接近,误差较小。

     

  • 图  1  反应结晶装置

    Figure  1.  Reactive crystallizer

    1—Storage tank;2—Peristaltic pump;3—Stirring motor;4—Jacked reactor;5—Thermostatic bath

    图  2  40~70 ℃下Li3PO4在不同NaOH质量分数下的溶解度及XRD图谱

    Figure  2.  Solubility and XRD patterns of Li3PO4 in NaOH solution with different mass fraction from 40 ℃ to 70 ℃

    图  3  反应温度对Li3PO4收率和平均粒径的影响

    Figure  3.  Effects of reaction temperature on the yield and average size of Li3PO4

    图  4  Li+ 质量浓度对Li3PO4收率和平均粒径的影响

    Figure  4.  Effects of Li+ mass concentration on the yield and average size of Li3PO4

    图  5  Na3PO4·12H2O 用量对 Li3PO4 收率和平均粒径的影响

    Figure  5.  Effects of Na3PO4·12H2O dosage on the yield and average size of Li3PO4

    图  6  搅拌速率对Li3PO4收率和平均粒径的影响

    Figure  6.  Effects of stirring speed on the yield and average size of Li3PO4

    图  7  加料速率对Li3PO4收率和平均粒径的影响

    Figure  7.  Effects of feeding rate on the yield and average size of Li3PO4

    图  8  NaOH质量分数对Li3PO4收率和平均粒径的影响

    Figure  8.  Effects of mass fraction of NaOH on the yield and average size of Li3PO4

    图  9  K元素不同浓度下Li3PO4 晶体电镜图

    Figure  9.  SEM images of Li3PO4 prepared with different K concentrations

    图  10  Si元素不同浓度下Li3PO4 晶体扫描电镜图

    Figure  10.  SEM images of Li3PO4 prepared with different Si concentrations

    图  11  Al元素不同浓度下Li3PO4 晶体扫描电镜图

    Figure  11.  SEM images of Li3PO4 prepared with different Al concentrations

    图  12  Li3PO4产物中K、Si和Al元素质量分数及各元素摄取率

    Figure  12.  Mass fraction of K, Si, Al and their uptake of Li3PO4

    图  13  杂质元素不同浓度下Li3PO4 晶体产物能谱图

    Figure  13.  EDS analysis of Li3PO4 prepared with different concentrations of impurity elements

    表  1  不同温度下LI3PO4晶体的平均粒径和变异系数

    Table  1.   Average size and C.V. of Li3PO4 at different reaction temperatures

    t/℃D[4,3]/μmC.V./%
    2526.545.35
    4014.257.70
    558.0859.57
    705.6561.95
    804.3866.29
    904.2766.76
    下载: 导出CSV

    表  2  不同Li+质量浓度下Li3PO4晶体的平均粒径和变异系数

    Table  2.   Average size and C.V. of Li3PO4 at different Li+ mass concentrations

    ρ(Li+)/(g·L−1)D[4,3]/μmC.V./%
    0.4712.552.27
    0.6611.857.87
    0.8710.459.41
    1.748.2159.95
    2.545.2066.63
    3.934.8867.63
    5.114.2068.30
    下载: 导出CSV

    表  3  不同Na3PO4·12H2O用量下磷酸锂晶体的平均粒径和变异系数

    Table  3.   Average size and C.V. of Li3PO4 at different dosages of Na3PO4·12H2O

    Dosage of Na3PO4·12H2O/%D[4,3]/μmC.V./%
    1008.6256.43
    1107.7560.81
    1207.1565.28
    1306.8167.03
    1406.6169.03
    下载: 导出CSV

    表  4  不同搅拌速率下Li3PO4晶体的平均粒径和变异系数

    Table  4.   Average size and C.V. of Li3PO4 at different stirring speeds

    Stirring speed/(r·min−1)D[4,3]/μmC.V./%
    1005.8069.24
    3008.0062.24
    5009.4860.24
    7008.6560.40
    9006.8062.05
    下载: 导出CSV

    表  5  不同加料速率下Li3PO4晶体的平均粒径和变异系数

    Table  5.   Average size and C.V. of Li3PO4 at different feeding rates

    Feeding rate/(mL·min−1)D[4,3]/μmC.V./%
    139.336.77
    529.741.19
    1029.950.35
    1526.251.01
    2025.855.49
    下载: 导出CSV

    表  6  不同NaOH质量分数下Li3PO4晶体的平均粒径和变异系数

    Table  6.   Average size and C.V. of Li3PO4 at different mass fractions of NaOH

    Mass fraction of NaOH/%D[4,3]/μmC.V./%
    029.739.19
    629.540.66
    1327.541.66
    2024.643.70
    2715.044.93
    下载: 导出CSV

    表  7  CCD试验设计及结果

    Table  7.   Central composite design and experimental results

    No. t/℃ ρ(Li+)/(g·L−1) Dosage of Na3PO4·12H2O/% Feeding rate/(mL·min−1) Yield/% Particle size/μm
    1 60 1.6 110 4 90.07 27.78
    2 80 3.2 110 4 97.56 29.94
    3 70 2.4 120 13 95.99 23.76
    4 80 1.6 130 10 97.37 18.57
    5 50 2.4 120 7 89.07 30.27
    6 70 4.0 120 7 96.35 24.92
    7 60 3.2 130 10 94.61 27.54
    8 70 0.8 120 7 91.89 15.83
    9 60 3.2 130 4 94.37 30.37
    10 70 2.4 120 7 95.23 29.62
    11 70 2.4 120 7 95.61 27.00
    12 70 2.4 120 7 95.92 30.77
    13 80 3.2 130 4 97.42 29.49
    14 60 3.2 110 4 93.84 27.01
    15 80 1.6 110 4 94.61 28.25
    16 60 3.2 110 10 94.21 23.10
    17 80 3.2 130 10 98.03 25.73
    18 90 2.4 120 7 97.78 25.05
    19 80 1.6 130 4 96.47 24.27
    20 70 2.4 100 7 93.96 29.38
    21 80 3.2 110 10 96.92 22.74
    22 70 2.4 120 7 95.26 32.53
    23 60 1.6 130 10 92.82 19.58
    24 70 2.4 120 7 95.55 31.29
    25 60 1.6 110 10 90.31 20.21
    26 70 2.4 120 1 93.82 33.14
    27 80 1.6 110 10 95.51 18.56
    28 70 2.4 120 7 95.15 33.67
    29 60 1.6 130 4 92.59 21.48
    30 70 2.4 140 7 95.76 26.93
    下载: 导出CSV
  • [1] 钟财富, 刘坚, 吕斌, 等. 我国新能源汽车产业锂资源需求分析及政策建议[J]. 中国能源, 2018, 40(10): 12-15, 24. doi: 10.3969/j.issn.1003-2355.2018.10.002
    [2] 马哲, 李建武. 中国锂资源供应体系研究: 现状、问题与建议[J]. 中国矿业, 2018, 27(10): 1-7.
    [3] KUANG G, CHEN Z B, GUO H, et al. Lithium extraction mechanism from α-spodumene by fluorine chemical method[J]. Advanced Materials Research, 2012, 524-527: 2011-2016. doi: 10.4028/www.scientific.net/AMR.524-527.2011
    [4] SWAIN B. Recovery and recycling of lithium: A review[J]. Separation and Purification Technology, 2016, 172: 388-403.
    [5] CHOUBEY P K, KIM M S, SRIVASTAVA R R, et al. Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources[J]. Minerals Engineering, 2016, 89: 119-137. doi: 10.1016/j.mineng.2016.01.010
    [6] BARBOSA L I, GONZÁLEZ J A, RUIZ M D C. Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride[J]. Thermochimica Acta, 2015, 605: 63-67. doi: 10.1016/j.tca.2015.02.009
    [7] LUONG V T, KANG D J, AN J W, et al. Iron sulphate roasting for extraction of lithium from lepidolite[J]. Hydrometallurgy, 2014, 141: 8-16. doi: 10.1016/j.hydromet.2013.09.016
    [8] CHEN Y, TIAN Q, CHEN B, et al. Preparation of lithium carbonate from spodumene by a sodium carbonate autoclave process[J]. Hydrometallurgy, 2011, 109: 43-46. doi: 10.1016/j.hydromet.2011.05.006
    [9] ROSALES G D, RUIZ M D C, RODRIGUEZ M H. Novel process for the extraction of lithium from β-spodumene by leaching with HF[J]. Hydrometallurgy, 2014, 147-148: 1-6. doi: 10.1016/j.hydromet.2014.04.009
    [10] 牛锛, 满丽莹, 齐恩磊, 等. 磷酸锂粉体的制备与表征[J]. 硫磷设计与粉体工程, 2011(2): 27-28. doi: 10.3969/j.issn.1009-1904.2011.02.007
    [11] MA W, SI W, WU W, et al. Structures and catalytic properties of lithium phosphates[J]. Catalysis Letters, 2011, 141(7): 1032-1036. doi: 10.1007/s10562-011-0597-z
    [12] MA Y, LI X L, SUN SH F, et al. Synthesize of graphene-LiFePO4 composite porous microsphere with the enhanced rate performance[J]. International Journal of Electrochemical Science, 2013, 8(2): 2842-2848.
    [13] 陈玲, 章小明, 朱志全, 等. 从废旧锂离子电池回收粗制磷酸锂中提取锂制备电池级碳酸锂工艺探究[J]. 江西化工, 2018(6): 94-96. doi: 10.3969/j.issn.1008-3103.2018.06.030
    [14] 吴鉴, 赵泉峰, 龙萍, 等. 电池级碳酸锂制备过程中磷酸锂除钙的研究[J]. 电源技术, 2016, 40(11): 2110-2111, 2147. doi: 10.3969/j.issn.1002-087X.2016.11.002
    [15] 胡意, 艾常春, 刘洋, 等. 紊流循环法合成超细磷酸锂及表征[J]. 化工学报, 2014, 65(3): 1099-1103. doi: 10.3969/j.issn.0438-1157.2014.03.046
    [16] KUANG G, LI H, HU S, et al. Recovery of aluminum and lithium from gypsum residue obtained in the process of lithium extraction from lepidolite[J]. Hydrometallurgy, 2015, 157: 214-218. doi: 10.1016/j.hydromet.2015.08.020
    [17] MAO X L, SONG X F, LU G M, et al. Effects of metal ions on crystal morphology and size of calcium sulfate whiskers in aqueous HCl solutions[J]. Industrial & Engineering Chemistry Research, 2014, 53(45): 17625-17635.
    [18] LIU T, FAN H, XU Y, et al. Effects of metal ions on the morphology of calcium sulfate hemihydrate whiskers by hydrothermal method[J]. Frontiers of Chemical Science & Engineering, 2017, 11(4): 545-553.
  • 加载中
图(13) / 表(7)
计量
  • 文章访问数:  824
  • HTML全文浏览量:  596
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-30
  • 网络出版日期:  2020-07-15
  • 刊出日期:  2020-10-30

目录

    /

    返回文章
    返回