高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

茂金属催化剂催化丙烯聚合的β-Me消除选择性研究

肖凌云 马海燕

肖凌云, 马海燕. 茂金属催化剂催化丙烯聚合的β-Me消除选择性研究[J]. 华东理工大学学报(自然科学版), 2020, 46(3): 393-403. doi: 10.14135/j.cnki.1006-3080.20190329005
引用本文: 肖凌云, 马海燕. 茂金属催化剂催化丙烯聚合的β-Me消除选择性研究[J]. 华东理工大学学报(自然科学版), 2020, 46(3): 393-403. doi: 10.14135/j.cnki.1006-3080.20190329005
XIAO Lingyun, MA Haiyan. Selectivity towards β-Me Elimination of Metallocene Catalysts in Catalytic Propylene Polymerization[J]. Journal of East China University of Science and Technology, 2020, 46(3): 393-403. doi: 10.14135/j.cnki.1006-3080.20190329005
Citation: XIAO Lingyun, MA Haiyan. Selectivity towards β-Me Elimination of Metallocene Catalysts in Catalytic Propylene Polymerization[J]. Journal of East China University of Science and Technology, 2020, 46(3): 393-403. doi: 10.14135/j.cnki.1006-3080.20190329005

茂金属催化剂催化丙烯聚合的β-Me消除选择性研究

doi: 10.14135/j.cnki.1006-3080.20190329005
基金项目: 国家自然科学基金(21274041)
详细信息
    作者简介:

    肖凌云(1991-),男,湖南人,硕士生,主要研究方向为金属有机均相催化聚合。E-mail:xiaolingy1991@163.com

    通讯作者:

    马海燕,E-mail:haiyanma@ecust.edu.cn

  • 中图分类号: O62

Selectivity towards β-Me Elimination of Metallocene Catalysts in Catalytic Propylene Polymerization

  • 摘要: 合成及表征了一系列亚乙基桥联取代茚-芴锆、铪络合物{C2H4(5,6-cyclopenta-Ind)(Flu)}ZrCl2C1),{C2H4(5,6-cyclopenta-Ind)(2,7-tBu2-Flu)}ZrCl2C2),{C2H4(3-Bn-5,6-cyclopenta-Ind)(2,7-tBu2-Flu)}ZrCl2C3),{C2H4(3-Bn-5,6-cyclopenta-Ind)(2,7-tBu2-Flu)}HfCl2C4),并研究了其与甲基铝氧烷(MAO)组成催化体系催化丙烯聚合的行为。结果表明,在MAO活化下络合物C1~C4均以中等至高等的催化活性催化丙烯聚合,得到以亚乙烯基端基或烯丙基端基为主的丙烯齐聚物或高聚物。在40~100 ℃,茚环3-位苄基取代的C3具有较高的β-巯基乙醇(β-Me)消除选择性(80%~83%),显著高于茚环3-位没有苄基取代的锆络合物C1C2,且所得聚合物分子量Mn(800~13 600)也明显低于其他锆络合物催化所得聚合物分子量,说明以β-Me消除为主要链转移方式时有利于降低聚合产物分子量。铪络合物C4具有最高的β-Me消除选择性(87%),但催化活性很低。

     

  • 图  1  配体L1~L3的合成路线(a);配体合成过程中形成的异构体(b);络合物C1~C4的合成路线(c)

    Figure  1.  Synthetic route of ligands L1~L3(a); Isomers formed in the synthesis of ligands(b); Synthetic route of complexes C1~C4

    图  2  络合物C2的分子结构

    Figure  2.  Molecular structure of complex C2

    图  3  配体L2和络合物C21H-NMR谱图(CDCl3, 400 MHz)

    Figure  3.  1H-NMR spectra of ligand L2 and complex C2 (CDCl3, 400 MHz)

    图  4  丙烯聚合产物的1H-NMR谱图(CDCl3, 400 MHz)

    Figure  4.  1H-NMR spectrum of propylene polymerization product (CDCl3, 400 MHz)

    图  5  亚乙基桥联取代茚-芴体系催化丙烯齐聚/聚合形成的主要端基结构

    Figure  5.  Structures of dorminant terminal groups formed in propylene oligomerization/polymerization catalyzed by ethylene-bridged substituted indenyl-fluorenyl metal complexes

    表  1  络合物C2的部分键长和键角

    Table  1.   Selected bond lengths and angles for complex C2

    Complex C2Bond length/10−10 mBond angle/(°)
    Zr(1)-C(1) 2.474 2
    Zr(1)-C(2) 2.575 3
    Zr(1)-C(3) 2.605 2
    Zr(1)-C(4) 2.514 3
    Zr(1)-C(5) 2.451 3
    Zr(1)-C(6) 2.428 2
    Zr(1)-C(7) 2.540 2
    Zr(1)-C(8) 2.685 2
    Zr(1)-C(9) 2.682 2
    Zr(1)-C(10) 2.541 2
    Zr(1)-Cl(1) 2.416 5 7
    Zr(1)-Cl(2) 2.430 6 7
    Cl(1)-Zr(1)-Cl(2) 95.95 2
    下载: 导出CSV

    表  2  络合物C1~C4催化丙烯聚合结果1)

    Table  2.   Propene polymerization catalyzed by complexes C1~C41)

    Entry Complex n(Al)∶n(M)2) Tp/℃ ppropene/MPa m/g Catalytic activity/
    (106g·mol−1·h−1)
    Selectivity of β-Me/%3) Selectivity of β-H/%3) Mn4)
    1 C1 4 000 40 0.6 0.57 0.91 42 58 23 200
    2 C1 4 000 80 0.6 1.22 1.95 57 43 17 100
    3 C1 4 000 100 0.6 2.35 3.76 69 31 5 400
    4 C2 4 000 80 0.6 3.26 5.22 50 50 4 000
    5 C2 4 000 40 0.4 0.35 0.56 43 57 31 700
    6 C2 4 000 60 0.4 0.59 0.94 42 58 30 300
    7 C2 4 000 80 0.4 1.85 2.96 43 57 23 600
    8 C2 4 000 100 0.4 4.58 7.33 43 58 5 200
    9 C2 1 000 80 0.4 0.20 0.32 71 29 8 000
    10 C2 2 000 80 0.4 0.37 0.59 70 30 11 200
    11 C2 3 000 80 0.4 1.09 1.74 61 39 11 700
    12 C3 4 000 40 0.6 2.10 3.36 83 17 900
    13 C3 4 000 60 0.6 1.79 2.86 80 20 3 200
    14 C3 4 000 80 0.6 1.60 2.56 82 18 1 700
    15 C3 4 000 100 0.6 1.44 2.30 83 17 1 100
    16 C3 4 000 40 0.4 0.12 0.19 62 38 13 600
    17 C3 1 000 80 0.6 0.62 0.99 85 15 800
    18 C4 4 000 40 0.6 0.08 0.13
    19 C4 4 000 80 0.6 0.17 0.27 87 13 3 000
    20 C4 4 000 80 0.4 0.08 0.13
    1) Conditions: Toluene as solvent; V = 25 mL; MAO as cocatalyst; 30 min; c (Catalyst) = 0.05 mmol/L; 2) M=Zr,Hf; 3) In percentage of total unsaturated end groups, determined by 1H-NMR spectroscopy; 4) Determined by 1H-NMR spectroscopy
    下载: 导出CSV
  • [1] 赵敏. 改性聚丙烯新材料 [M]. 北京: 化学工业出版社, 2010.
    [2] RESCONI L, CAMURATI I, SUDMEIJER O. Chain transfer reactions in propylene polymerization with zirconocene catalysts[J]. Topics in Catalysis, 1999, 7(1/4): 145-163.
    [3] RESCONI L, PIEMONTESI F, FRANCISCONO G, et al. Olefin polymerization at bis(pentamethylcyclopentadienyl) zirconium and –hafnium centers: Chain-transfer mechanisms[J]. Journal of the American Chemical Society, 1992, 114(3): 1025-1032. doi: 10.1021/ja00029a035
    [4] RESCONI L, JONES R L, RHEINGOLD A L, et al. High-molecular-weight atactic polypropylene from metallocene catalysts. 1. Me2Si(9-Flu)2ZrX2 (X = Cl, Me)[J]. Organometallics, 1996, 15(3): 998-1005. doi: 10.1021/om950197h
    [5] RESCONI L, PIEMONTESI F, CAMURATI I, et al. Highly regiospecific zirconocene catalysts for the isospecific polymerization of propene[J]. Journal of the American Chemical Society, 1998, 120(10): 2308-2321. doi: 10.1021/ja973160s
    [6] SCHOBEL A, LANZINGER D, RIEGER B. Polymerization behavior of C1-symmetric metallocenes (M = Zr, Hf): From ultrahigh molecular weight elastic polypropylene to useful macromonomers[J]. Organometallics, 2013, 32(2): 427-437. doi: 10.1021/om300781a
    [7] MARKEL E J, WENG W, PEACOCK A J, et al. Metallocene-based branch-block thermoplastic elastomers[J]. Macromolecules, 2000, 33(23): 8541-8548. doi: 10.1021/ma001087b
    [8] WENG W Q, MARKEL E J, DEKMEZIAN A H. Synthesis of vinyl-terminated isotactic poly(propylene)[J]. Macromolecular Rapid Communications, 2000, 21(16): 1103-1107. doi: 10.1002/(ISSN)1521-3927
    [9] JANIAK C, LANGE K C H, MARQUARDT P. Alkyl-substituted cyclopentadienyl- and phospholyl-zirconium/MAO catalysts for propene and 1-hexene oligomerization[J]. Journal of Molecular Catalysis A: Chemical, 2002, 180(1/2): 43-58. doi: 10.1016/S1381-1169(01)00407-1
    [10] BADER M, MARQUET N, CARPENTIER J F, et al. Old and new C1 symmetric group 4 metallocenes {(R1R2C)-(R2′R3′R6′R7′-Flu)(3-R3-5-R4-C5H2)}ZrCl2: From highly isotactic polypropylenes to vinyl end-capped isotactic-enriched oligomers[J]. Organometallics, 2012, 31(23): 8375-8387. doi: 10.1021/om300957k
    [11] SUZUKI Y, YASUMOTO T, MASHIMA K, et al. Hafnocene catalysts for selective propylene oligomerization: Efficient synthesis of 4-methyl-1-pentene by β-methyl transfer[J]. Journal of the American Chemical Society, 2006, 128(39): 13017-13025. doi: 10.1021/ja063717g
    [12] HAJELA S, BERCAW J E. Competitive chain transfer by β-hydrogen and β-methyl elimination for the model Ziegler-Natta olefin polymerization system[Me2Si(η5-C5Me4)2]Sc{CH2CH(CH3)2}(PMe3)[J]. Organometallics, 1994, 13(4): 1147-1154. doi: 10.1021/om00016a018
    [13] ZHANG L, ZHANG B, MA H Y. Ethylene-bridged indenyl-fluorenyl metallocene complexes for efficient preparation of allyl-terminated propylene oligomers and polymers via selective β-methyl transfer[J]. Chinese Journal of Polymer Science, 2019, 37(6): 578-590.
    [14] 张雷. 新型C1-对称亚乙基桥联多取代茚-芴锆、铪络合物的合成及催化丙烯选择性齐聚、聚合研究 [D]. 上海: 华东理工大学, 2016.
    [15] FANTINEL F, MIHAN S. Mono-hydroindacenyl complexes: US8247587B2[P]. 2012-08-21.
    [16] HALTERMAN R L, TRETYAKOV A, KHAN M A. Synthesis and structure of[1,2-bis(1-indenyl)benzene]titanium and zirconium dichlorides[J]. Journal of Organometallic Chemistry, 1998, 568(1/2): 41-51. doi: 10.1016/S0022-328X(98)00753-0
    [17] AITOLA E, SURAKKA M, REPO T, et al. Polymerization of ethene with zirconocene catalysts: An experimental and quantum chemical study of the influence of para-substituent in benzyl in bis {η5-(1-benzyl)indenyl}zirconium dichlorides[J]. Journal of Organometallic Chemistry, 2005, 690(3): 773-783. doi: 10.1016/j.jorganchem.2004.09.089
    [18] 黄文忠. 新型C1-对称亚乙基桥联茚芴锆金属络合物的合成及催化烯烃聚合性能研究 [D]. 上海: 华东理工大学, 2010.
    [19] MISE T, KAGEYAMA A, MIYA S, et al. On the mechanism of oligomerization of propylene by (C5Me5)2MCl2/methylalumoxane catalysts (M= Zr, Hf)[J]. Chemistry Letters, 1991, 20(9): 1525-1528. doi: 10.1246/cl.1991.1525
    [20] FISCHER J M, PIERS W E, YOUNG V G J. Crystal structure of (pentamethylcyclopentadienyl)-(π-η5: σ-η1-tetramethylfulvene)titanium(III)[J]. Organometallics, 1996, 15(9): 2410-2412. doi: 10.1021/om960007i
    [21] BERCAW J E, BRINTZINGER H H. Bis(pentamethylcyclopentadienyl)titanium(II). Isolation and reactions with hydrogen, nitrogen, and carbon monoxide[J]. Journal of the American Chemical Society, 1971, 93(8): 2045-2046. doi: 10.1021/ja00737a033
    [22] BERCAW J E. Bis(pentamethylcyclopentadienyl) titanium(II) and its complexes with molecular nitrogen[J]. Journal of the American Chemical Society, 1974, 96(16): 5087-5095. doi: 10.1021/ja00823a012
    [23] LUINSTRA G A, TEUBEN J H. The deceptively simple thermolysis of trivalent permethyltitanocene derivatives (eta-.5-C5Me5)2TiR.:Formation of a tetramethylfulvene titanium compound (eta-.6-C5Me4CH2)(eta-.5-C5Me5)Ti and RH, catalyzed by permethyltitanocene hydride, (eta-.5-C5Me5)2TiH[J]. Journal of the American Chemical Society, 1992, 114(9): 3361-3367. doi: 10.1021/ja00035a030
    [24] KIRILLOV E, MARQUET N, CARPENTIER J F, et al. New C1-symmetric Ph2C-bridged multisubstituted ansa-zirconocenes for highly isospecific propylene polymerization: Synthetic approach via activated fulvenes[J]. Organometallics, 2010, 29(21): 5073-5082. doi: 10.1021/om100289y
    [25] MILLER S A, BERCAW J E. Mechanism of isotactic polypropylene formation with C1-symmetric metallocene catalysts[J]. Organometallics, 2006, 25(15): 3576-3592. doi: 10.1021/om050841k
    [26] WANG Y, HUANG W Z, MA H Y, et al. Ethylene-bridged C1-symmetric ansa-(3-R-indenyl)(fluorenyl) zirconocene complexes for propylene dimerization or polymerization: The effect of R group[J]. Polyhedron, 2014, 76: 81-93. doi: 10.1016/j.poly.2014.03.019
    [27] HUANG W Z, WANG Y, MA H Y, et al. Highly selective propylene dimerization catalyzed by C1-symmetric zirconocene complexes[J]. Applied Organometallic Chemistry, 2014, 28(6): 413-422. doi: 10.1002/aoc.v28.6
    [28] LICHT E H, ALT H G, KARIM M M. ω-Phenylalkyl-substituted zirconocene dichloride complexes as catalyst precursors for homogeneous ethylene polymerization[J]. Journal of Organometallic Chemistry, 2000, 599(2): 275-287. doi: 10.1016/S0022-328X(00)00009-7
    [29] BOCHMANN M, GREEN M L H, POWELL A K, et al. Cationic zirconocene complexes with benzyl and Si(SiMe3)3 substituted cyclopentadienyl ligands [J]. Journal of the Chemical Society Dalton Transactions, 1999: 43-50. DOI: 10.1039/A807418F.
    [30] DOERRER L, GREEN M L H, HAUBINGER D, et al. Evidence for cationic group 4 zirconocene complexes with intramolecular phenyl coordination [J]. Journal of the Chemical Society Dalton Transactions, 1999: 2111-2118. DOI: 10.1039/A80:177H.
    [31] ALT H G, JUNG M. C2-bridged metallocene dichloride complexes of the types (C13H8-CH2CHR-C9H6-nR'n)ZrCl2 and (C13H8-CH2CHR-C13H8)MCl2 (n=0, 1; R = H, alkenyl; R’ = alkenyl, benzyl; M = Zr, Hf) as self-immobilizing catalyst precursors for ethylene polymerization[J]. Journal of Organometallic Chemistry, 1999, 580(1): 1-16. doi: 10.1016/S0022-328X(98)00736-0
    [32] LICHT E H, ALT H G, KARIM M M. Synthesis, characterization and catalytic properties of metallacyclic zirconocene complexes[J]. Journal of Organometallic Chemistry, 2000, 599(2): 261-274. doi: 10.1016/S0022-328X(00)00004-8
    [33] LICHT E H, ALT H G, KARIM M M. Mixed substituted zirconocene dichloride complexes as catalyst precursors for homogeneous ethylene polymerization[J]. Journal of Molecular Catalysis A: Chemical, 2000, 159(2): 273-283. doi: 10.1016/S1381-1169(00)00205-3
    [34] 王岩. 基于茚环 3-位取代的茚-茚、茚-芴锆络合物的合成及催化烯烃齐聚、聚合性能研究 [D]. 上海: 华东理工大学, 2012.
    [35] 张滨. 新型亚乙基桥联茚-芴锆络合物的合成及催化丙烯选择性齐聚的研究[D]. 上海: 华东理工大学, 2014.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  8814
  • HTML全文浏览量:  2676
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-29
  • 网络出版日期:  2019-05-23
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回