高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

氧化锰包覆沸石分子筛的制备及其对甲苯的催化氧化

丁飞扬 薛源 张玲 李春忠

丁飞扬, 薛源, 张玲, 李春忠. 氧化锰包覆沸石分子筛的制备及其对甲苯的催化氧化[J]. 华东理工大学学报(自然科学版), 2020, 46(4): 495-501. doi: 10.14135/j.cnki.1006-3080.20190329002
引用本文: 丁飞扬, 薛源, 张玲, 李春忠. 氧化锰包覆沸石分子筛的制备及其对甲苯的催化氧化[J]. 华东理工大学学报(自然科学版), 2020, 46(4): 495-501. doi: 10.14135/j.cnki.1006-3080.20190329002
DING Feiyang, XUE Yuan, ZHANG Ling, LI Chunzhong. Preparation of Manganese Oxide Coating Zeolite Molecular Sieve Catalyst and Its Catalytic Oxidation for Toluene[J]. Journal of East China University of Science and Technology, 2020, 46(4): 495-501. doi: 10.14135/j.cnki.1006-3080.20190329002
Citation: DING Feiyang, XUE Yuan, ZHANG Ling, LI Chunzhong. Preparation of Manganese Oxide Coating Zeolite Molecular Sieve Catalyst and Its Catalytic Oxidation for Toluene[J]. Journal of East China University of Science and Technology, 2020, 46(4): 495-501. doi: 10.14135/j.cnki.1006-3080.20190329002

氧化锰包覆沸石分子筛的制备及其对甲苯的催化氧化

doi: 10.14135/j.cnki.1006-3080.20190329002
基金项目: 国家自然科学基金(51673063,21878092,1838003,91834301)
详细信息
    作者简介:

    丁飞扬(1993—),男,江苏常州人,硕士生,主要研究方向为VOC催化氧化。E-mail: Feiyang_ding@163.com

    通讯作者:

    张 玲,E-mail: zlingzi@ecust.edu.cn

    李春忠,E-mail:czli@ecust.edu.cn

  • 中图分类号: X701

Preparation of Manganese Oxide Coating Zeolite Molecular Sieve Catalyst and Its Catalytic Oxidation for Toluene

  • 摘要: 利用高锰酸钾与硝酸锰在溶液中的氧化还原反应,采用一步法合成了氧化锰包覆沸石分子筛复合材料。通过引入介孔模板剂,控制反应温度、浓度来调控氧化锰的结构与性质。结果表明:氧化锰呈现出层状多孔结构;反应温度与浓度不仅可以改变氧化锰的形貌,还会影响复合材料的比表面积以及氧化锰中晶格氧与吸附氧、Mn3+与Mn4+的物质的量之比。最佳条件下制备的氧化锰包覆分子筛催化剂在256 ℃下,对甲苯(0.26 g/m3)的转化率超过90%。

     

  • 图  1  催化剂样品的扫描电子显微镜图

    a—Zeolite molecular sieve; b—Mn/Z-I-2; c—Mn/Z-R-2; d—Mn/Z-B-2; e—Mn/Z-I-1; f—Mn/Z-I-3; g—Mn/Z-I-5

    Figure  1.  SEM images of catalyst samples

    图  2  氮气吸附-解吸等温线:(a)不同温度下制备的催化剂与沸石分子筛;(b)氧化锰不同包覆量的催化剂

    Figure  2.  N2 Isothermal adsorption and desorption curves: (a) Catalysts prepared at different temperatures and zeolite molecular sieve; (b) Catalysts with different manganese oxide supporting contents

    图  3  催化剂的XPS谱图:不同温度下制备的催化剂与沸石分子筛的O 1s谱(a)和Mn 2p谱(c);不同氧化锰包覆量催化剂的O 1s谱(b)和Mn 2p谱(d)

    Figure  3.  XPS patterns of the different catalysts:(a) O 1s and (c) Mn 2p of catalysts prepared at different temperatures and zeolite molecular sieve ; (b) O 1s and (d) Mn 2p of catalysts prepared with different manganese oxide coating content

    图  4  甲苯转化率:(a)不同温度下制备的催化剂;(b)冰浴下制备的不同包覆量的催化剂

    Figure  4.  Toluene conversion: (a) Catalysts prepared at different temperatures; (b) Catalysts prepared under ice water bath with different coating contents

    图  5  不同气体空速下催化剂对甲苯的催化

    Figure  5.  Catalyst for toluene at different GHSV

    表  1  催化剂样品与沸石分子筛的比表面积与孔径

    Table  1.   Special surface area and pore size of all catalyst samples and zeolite molecular sieve

    Samples SBET/ (m2·g–1) DBJH/nm Porosity/(cm3·g–1)
    13X zeolite 693.12 3.82 0.34
    Mn/Z-I-2 532.26 8.81 0.26
    Mn/Z-R-2 563.79 6.00 0.26
    Mn/Z-B-2 577.02 6.52 0.27
    Mn/Z-I-1 588.18 6.27 0.29
    Mn/Z-I-3 507.33 7.75 0.26
    Mn/Z-I-5 283.01 20.71 0.10
    下载: 导出CSV

    表  2  催化剂样品的元素组成

    Table  2.   Element composition of catalyst samples

    Samples w(Mn)/% n(Olatt)∶n(Oad) n (Mn3+)∶n (Mn4+)
    Mn/Z-I-2 14.92 1.33 0.74
    Mn/Z-R-2 14.85 1.21 0.69
    Mn/Z-B-2 14.88 1.25 0.67
    Mn/Z-I-1 8.05 0.67 1.03
    Mn/Z-I-3 17.84 1.37 0.70
    Mn/Z-I-5 22.98 1.78 0.56
    下载: 导出CSV
  • [1] THEVENET F, DEBONO O, RIZK M, et al. VOC uptakes on gypsum boards: Sorption performances and impact on indoor air quality[J]. Building & Environment, 2018, 137: 138-146.
    [2] COHEN M A, RYAN P B, YANAGISAWA Y, et al. The validation of a passive sampler for indoor and outdoor concentrations of volatile organic compounds[J]. Air Repair, 1990, 40(7): 993-997.
    [3] KIM Y M, STUART H A, HARRISONR M. Concentrations and sources of VOCs in urban domestic and public microenvironments[J]. Environmental Science & Technology, 2016, 35(6): 997-1004.
    [4] KIM S. The reduction of formaldehyde and VOCs emission from wood-based flooring by green adhesive using cashew nut shell liquid[J]. Journal of Hazardous Materials, 2010, 182(13): 919-922.
    [5] LIU Y, ZHU X. Measurement of formaldehyde and VOCs emissions from wood-based panels with nanomaterial-added melamine-impregnated paper[J]. Construction and Building Materials, 2014, 66: 132-137. doi: 10.1016/j.conbuildmat.2014.05.088
    [6] CHIA W T, CHANG T C, CHYOW S C, et al. Study on the indoor volatile organic compound treatment and performance assessment with TiO2/MCM-41 and TiO2/quartz photoreactor under ultraviolet irradiation[J]. Journal of the Air & Waste Management Association, 2008, 58(10): 1266-1273.
    [7] PAPAEFTHIMIOU P, IOANNIDES T, VERYKIOS X E. VOC removal: Investigation of ethylacetate oxidation over supported Pt catalysts[J]. Catalysis Today, 1999, 54(1): 81-92. doi: 10.1016/S0920-5861(99)00170-4
    [8] KIM K J, KANG C S, YOU Y J, et al. Adsorption-desorption characteristics of VOCs over impregnated activated carbons[J]. Catalysis Today, 2006, 111(3): 223-228.
    [9] DUNN R F, EL-HALWAGI M M. Optimal design of multicomponent VOC condensation systems[J]. Journal of Hazardous Materials, 1994, 38: 187-206. doi: 10.1016/0304-3894(94)00014-X
    [10] EINAGA H, FUTAMURA S. Catalytic oxidation of benzene with ozone over Mn ion-exchanged zeolites[J]. Catalysis Communications, 2008, 8(3): 557-560.
    [11] MONTINI T, MELCHIONNA M, MONAI M, et al. Fundamentals and catalytic applications of CeO2-based materials[J]. Chemical Reviews, 2016, 116(10): 5987-6041. doi: 10.1021/acs.chemrev.5b00603
    [12] KONSOLAKIS M, SÓNIA A C C, TAVARES P B, et al. Redox properties and VOC oxidation activity of Cu catalysts supported on Ce1−xSmxOδ mixed oxides[J]. Journal of Hazardous Materials, 2013, 261: 512-521. doi: 10.1016/j.jhazmat.2013.08.016
    [13] BONINGARI T, PANAGIOTIS G S. Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations[J]. Journal of Catalysis, 2012, 288: 74-83.
    [14] JIAN Y, FENG G, WANG Y, et al. Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3[J]. Applied Catalysis B: Environmental, 2010, 95: 160-168.
    [15] ARSHADI M, GHIACI M, RAHMANIAN A, et al. Oxidation of ethylbenzene to acetophenone by a Mn catalyst supported on a modified nanosized SiO2/Al2O3 mixed-oxide in supercritical carbon dioxide[J]. Applied Catalysis B: Environmental, 2012, 119/120: 81-90. doi: 10.1016/j.apcatb.2012.02.019
    [16] BHANDARY N, INGOLE P P, BASU S. Electrosynthesis of Mn-Fe oxide nanopetals on carbon paper as bi-functional electrocatalyst for oxygen reduction and oxygen evolution reaction[J]. International Journal of Hydrogen Energy, 2018, 43(6): 3165-3171. doi: 10.1016/j.ijhydene.2017.12.102
    [17] VERHOEVEN J D, CHUEH S C, GIBSON E D. Strength and conductivity of in situ Cu-Fe alloys[J]. Journal of Materials Science, 1989, 24(5): 1748-1752. doi: 10.1007/BF01105700
    [18] QUAN X, YANG W, CUI S, et al. Sulfur resistance of Ce-Mn/TiO2 catalysts for low-temperature NH3-SCR[J]. Royal Society Open Science, 2018, 5(3): 171846. doi: 10.1098/rsos.171846
    [19] CHEN J, CHEN X, XU W, et al. Hydrolysis driving redox reaction to synthesize Mn-Fe binary oxides as highly active catalysts for the removal of toluene[J]. Chemical Engineering Journal, 2017, 330: 281-293. doi: 10.1016/j.cej.2017.07.147
    [20] EINAGA H, MAEDA N, YAMAMOTO S, et al. Catalytic properties of copper-manganese mixed oxides supported on SiO2 for benzene oxidation with ozone[J]. Catalysis Today, 2015, 245: 22-27. doi: 10.1016/j.cattod.2014.09.018
    [21] WANG L, ZHANG H P, YAN Y, et al. Total oxidation of isopropanol over manganese oxide modified ZSM-5 zeolite membrane catalysts[J]. Rsc Advances, 2015, 5(37): 29482-29490. doi: 10.1039/C4RA15730C
    [22] JIANG H, SUN T, LI C, et al. Hierarchical porous nanostructures assembled from ultrathin MnO2 nanoflakes with enhanced supercapacitive performances[J]. Journal of Materials Chemistry, 2012, 22: 2751-2756. doi: 10.1039/C1JM14732C
    [23] BAI B Y, LI J H, HAO J M. 1D-MnO2, 2D-MnO2 and 3D-MnO2 for low-temperature oxidation of ethanol[J]. Applied Catalysis: B. Environmental, 2015, 164: 241-250. doi: 10.1016/j.apcatb.2014.08.044
    [24] ZHANG J H, LI Y B, WANG L, et al. Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures[J]. Catalysis Science & Technology, 2015, 5: 2305-2313. doi: 10.1039/C4CY01461H
    [25] TIAN Z Y, PATRICK H T N, VANNIER V, et al. Catalytic oxidation of VOCs over mixed Co-Mn oxides[J]. Applied Catalysis: B. Environmental, 2012, 117/118: 125-134. doi: 10.1016/j.apcatb.2012.01.013
    [26] DELIMARIS D, IOANNIDES T. VOC oxidation over MnOx-CeO2 catalysts prepared by a combustion method[J]. Applied Catalysis: B. Environmental, 2009, 84: 303-312.
    [27] BALDI M, FINOCCHIO E, MILELLA F, et al. Catalytic combustion of C3 hydrocarbons and oxygenates over Mn3O4[J]. Applied Catalysis: B. Environmental, 1998, 16: 43-51.
    [28] LIN Y U, SUN M, JIAN Y U, et al. Synthesis and characterization of manganese oxide octahedral molecular sieve and its catalytic performance for DME combustion[J]. Chinese Journal of Catalysis, 2008, 29(11): 1127-1132.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  9568
  • HTML全文浏览量:  2772
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-29
  • 网络出版日期:  2019-05-29
  • 刊出日期:  2020-08-01

目录

    /

    返回文章
    返回