高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

炔丙氧基苯基对酚醛型氰酸酯固化反应和性能的影响

徐茜 袁荞龙 黄发荣

徐茜, 袁荞龙, 黄发荣. 炔丙氧基苯基对酚醛型氰酸酯固化反应和性能的影响[J]. 华东理工大学学报(自然科学版), 2020, 46(3): 376-384. doi: 10.14135/j.cnki.1006-3080.20190321004
引用本文: 徐茜, 袁荞龙, 黄发荣. 炔丙氧基苯基对酚醛型氰酸酯固化反应和性能的影响[J]. 华东理工大学学报(自然科学版), 2020, 46(3): 376-384. doi: 10.14135/j.cnki.1006-3080.20190321004
XU Qian, YUAN Qiaolong, HUANG Farong. Effect of Propargyloxyphenyl Side Groups on the Cure Reaction and Properties of Novolac-Type Cyanate Ester[J]. Journal of East China University of Science and Technology, 2020, 46(3): 376-384. doi: 10.14135/j.cnki.1006-3080.20190321004
Citation: XU Qian, YUAN Qiaolong, HUANG Farong. Effect of Propargyloxyphenyl Side Groups on the Cure Reaction and Properties of Novolac-Type Cyanate Ester[J]. Journal of East China University of Science and Technology, 2020, 46(3): 376-384. doi: 10.14135/j.cnki.1006-3080.20190321004

炔丙氧基苯基对酚醛型氰酸酯固化反应和性能的影响

doi: 10.14135/j.cnki.1006-3080.20190321004
基金项目: 中央高校基本科研业务费专项资金(222201817001)资助
详细信息
    作者简介:

    徐茜:徐 茜(1993—),女,山东济宁人,硕士生,研究方向为树脂基复合材料。E-mail:xq13127919983@163.com

    通讯作者:

    袁荞龙, E-mail:qlyuan@ecust.edu.cn

  • 中图分类号: TB35

Effect of Propargyloxyphenyl Side Groups on the Cure Reaction and Properties of Novolac-Type Cyanate Ester

  • 摘要: 通过重氮偶合反应在酚醛型氰酸酯(NCE)树脂的一侧接入了炔丙氧基苯基制备了含炔丙氧基苯基的酚醛型氰酸酯(PPANC)树脂,采用1H-NMR、FT-IR和UV-Vis等分析手段对该新型树脂进行了表征,并用热压法制备了石英纤维布增强PPANC树脂复合材料,研究了该树脂体系的固化特性和热稳定性以及复合材料的力学性能和介电性能。结果表明:接入的炔丙氧基苯基对NCE树脂的固化反应有促进作用,固化温度随炔丙氧基苯基接入比例的增加而降低;接入适当比例炔丙氧基苯基的PPANC树脂的力学性能和介电性能均优于NCE树脂,弯曲强度和层间剪切强度分别可达612.2、52.2 MPa左右,玻璃化转变温度高于350 ℃,在1~106 Hz范围内介电常数和介电损耗稳定且低于NCE树脂的相应值,介电常数低于3.6,介电损耗因子低于0.004。

     

  • 图  1  PPANC合成路线

    Figure  1.  Synthetic route of PPANC

    图  2  NCE、PPANC-20(a)和Novolac、PPAN-10(b)的1H-NMR谱图

    Figure  2.  1H-NMR spectra of NEC and PPANC-20 (a), Novolac and PPAN-10 (b)

    图  3  NCE、PPANC-20(a)和Novolac、PPAN-10(b)的FT-IR谱图

    Figure  3.  FT-IR spectra of NEC and PPANC-20 (a), Novolac and PPAN-10 (b)

    图  4  PPANC-20溶液异构化的UV-Vis图

    Figure  4.  UV-Vis spectra of PPANC-20 solution after UV irradiation and heated

    图  5  NCE,PPANC和PPAN-10树脂的DSC曲线

    Figure  5.  DSC curves of NCE, PPANC and PPAN-10 resins

    图  6  末端炔氢对PPANC的反应机理

    Figure  6.  Reaction mechanism of PPANC by the terminal alkynyl hydrogen

    图  7  NCE (a)和PPANC-20 (b)树脂热固化的红外谱图

    Figure  7.  FT-IR spectra of NCE (a) and PPANC-20 (b) resins during curing

    图  8  NCE和PPANC树脂的黏温曲线

    Figure  8.  Viscosity-temperature curves of NCE and PPANC resins

    图  9  NCE和PPANC树脂固化物的TGA曲线(氮气中)

    Figure  9.  TGA curves of the cured NCE and PPANC resins (in N2

    图  10  炔丙氧基苯基的固化反应

    Figure  10.  Curing reaction of p-propargyloxyphenyl group

    图  11  石英纤维布增强NCE和PPANC复合材料的DMA曲线

    Figure  11.  DMA curves of NCE and PPANC composites reinforced by quartz fabrics

    图  12  石英纤维布增强NCE和PPANC复合材料在不同频率下的介电常数

    Figure  12.  Dielectric constant of NCE and PPANC composites reinforced by quartz fabrics as a function of frequency

    图  13  石英纤维布增强NCE和PPANC复合材料在不同频率下的介电损耗因子

    Figure  13.  Dielectric dissipation factor of NCE and PPANC composites reinforced by quartz fabrics as a function of frequency

    表  1  NCE,PPANC和PPAN-10树脂的DSC数据

    Table  1.   DSC data of NCE, PPANC and PPAN-10 resins

    Samples Ti/℃ Tp/℃ ΔH/(J·g−1
    NCE 186.8 236.0 460.4
    PPANC-5 189.0 226.3 574.4
    PPANC-10 175.0 216.0 489.1
    PPANC-15 178.9 220.7 454.0
    PPANC-20 168.6 208.8 494.0
    PPAN-10 212.9 240.4 406.8
    下载: 导出CSV

    表  2  NCE和PPANC树脂固化物氮气中的TGA数据(氮气中)

    Table  2.   TGA data of the cured NCE and PPANC resins (in N2)

    Samples Td5/℃ Residual mass at 800 ℃/%
    NCE 415.9 57.6
    PPANC-5 414.4 59.1
    PPANC-10 411.6 59.4
    PPANC-15 405.6 58.4
    PPANC-20 403.6 56.6
    下载: 导出CSV

    表  3  石英纤维布增强NCE和PPANC树脂复合材料力学性能

    Table  3.   Mechanical properties of NCE and PPANC composites reinforced by quartz fabrics

    Compounds Bending strength/MPa Flexural modulus/GPa SILS/MPa
    NCE 543.2±30.96 25.5±1.47 44.9±1.55
    PPANC-5 580.7±17.25 27.5±0.38 49.4±0.56
    PPANC-10 612.2±23.23 25.8±0.93 52.2±3.12
    PPANC-15 586.0±19.93 24.1±0.88 52.9±1.30
    PPANC-20 523.8±32.75 20.0±0.62 53.4±2.29
    下载: 导出CSV
  • [1] CHEN C C, DON T M, LIN T H, et al. A kinetic study on the autocatalytic cure reaction of a cyanate ester resin[J]. Journal of Applied Polymer Science, 2004, 92(5): 3067-3079. doi: 10.1002/(ISSN)1097-4628
    [2] ZHUO D, GU A, LI Y, et al. Preparation and properties of hollow silica tubes/cyanate ester hybrids for high-frequency copper-clad laminates[J]. Journal of Materials Science, 2011, 46(6): 1571-1580. doi: 10.1007/s10853-010-4964-8
    [3] FANG T, SHIMP D A. Polycyanate esters: Science and applications[J]. Progress in Polymer Science, 1995, 20(1): 61-118. doi: 10.1016/0079-6700(94)E0006-M
    [4] CHAPLIN A, HAMERTON I, HERMAN H, et al. Studying water uptake effects in resins based on cyanate ester/bismaleimide blends[J]. Polymer, 2000, 41(11): 3945-3956. doi: 10.1016/S0032-3861(99)00603-5
    [5] SEISHI O, JOHN K, TYLER H, et al. Synthesis and characterization of cyanate ester functional benzoxazine and its polymer[J]. Macromolecules, 2015, 48(23): 8412-8417. doi: 10.1021/acs.macromol.5b02285
    [6] 戴善凯, 顾嫒娟, 梁国正, 等. 氰酸酯树脂的固化催化研究新进展[J]. 材料导报: 综述篇, 2009, 23(5): 57-64.
    [7] LIANG G, ZHANG M. Enhancement of process ability of cyanate ester resin via copolymerization with epoxy resin[J]. Journal of Applied Polymer Science, 2002, 85(11): 2377-2381.
    [8] MENG W W, RU J J, LIN C H. Origin of the rapid trimerization of cyanate ester in a benzoxazine/cyanate ester blend[J]. Macromolecules, 2015, 48(8): 2417-2421. doi: 10.1021/acs.macromol.5b00334
    [9] HUANG P, GU A, LIANG G, et al. Curing behavior and dielectric properties of hyperbranched poly (phenylene oxide)/cyanate ester resins[J]. Journal of Applied Polymer Science, 2011, 121(4): 2113-2122. doi: 10.1002/app.v121.4
    [10] 杜峰可, 袁荞龙, 黄发荣. 含硅芳炔树脂/苯并噁嗪/氰酸酯三元聚合体系研究[J]. 高分子学报, 2018(3): 410-418.
    [11] CAI M, YUAN Q, HUANG F. Catalytic effect of poly(silicon-containing arylacetylene) with terminal acetylene on the curing reaction and properties of a bisphenol A type cyanate ester[J]. Polymer International, 2018, 67(11): 1563-1571. doi: 10.1002/pi.2018.67.issue-11
    [12] ISABEL H, CLARA M G, MARCOS D R, et al. Cure monitoring of catalysed cyanate ester resins[J]. Polymer International, 2000, 49(7): 735-742. doi: 10.1002/(ISSN)1097-0126
    [13] ERGIN M, KISKAN B, BURCIN G A, et al. Thermally curable polystyrene via click chemistry[J]. Macromolecules, 2007, 40(13): 4724-4727. doi: 10.1021/ma070549j
    [14] 张学恒, 袁荞龙, 张丹枫, 等. 环氧/氰酸酯体系的固化反应动力学[J]. 华东理工大学学报(自然科学版), 2006, 32(6): 718-723. doi: 10.3969/j.issn.1006-3080.2006.06.019
    [15] KOH H C Y, DAI J, TAN E, et al. Catalytic effect of 2,2′‐diallyl bisphenol A on thermal curing of cyanate esters[J]. Journal of Applied Polymer Science, 2006, 101(3): 1775-1786.
    [16] GUO K, LI P, ZHU Y, et al. An in-situ self-catalytic hybrid cyanate ester resin and its self- catalytic polymerization behavior[J]. RSC Advances, 2016, 6(83): 80213-80220. doi: 10.1039/C6RA15247C
    [17] MIHRACE E, BARIS K, BURCIN G, et al. Thermally curable polystyrene via click chemistry[J]. Macromolecules, 2007, 40(13): 4724-4727.
    [18] SIRIWARDANE D A, KULIKOV O, BATCHELOR B L, et al. UV- and thermo-controllable azobenzene-decorated polycarbodiimide molecular springs[J]. Macromolecules, 2018, 51(10): 3722-3730. doi: 10.1021/acs.macromol.8b00679
    [19] MARTIN D, BAUER M, PANKRATOV V A. The synthesis of polycyanates by the polycyclotrimerisation of aromatic and organoelement cyanate esters[J]. Russian Chemical Reviews, 1977, 46(3): 278-295. doi: 10.1070/RC1977v046n03ABEH002132
    [20] 邢其毅, 裴伟伟, 徐瑞秋, 等. 基础有机化学[M]. 第四版. 北京: 北京大学出版社, 2016: 376-378.
    [21] GRENIER L M F, SANGLAR C. Prepolymers with propargylic terminal residual: I. Simulation of reaction mechanisms and kinetics on monofunctional models[J]. European Polymer Journal, 1997, 33(7): 1125-1134. doi: 10.1016/S0014-3057(97)00002-5
    [22] STOIL K D. Propargyl-terminated resins: A hydrophobic substitute for epoxy resins[J]. High Performance Polymers, 1990, 2(1): 67-77. doi: 10.1177/152483999000200107
    [23] BINDU R L, REGHUNADHAN N C P, NIANA K N. Addition-cure phenolic resins based on propargyl ether functional novolacs: Synthesis, curing and properties[J]. Polymer International, 2001, 50(6): 651-658. doi: 10.1002/pi.679
    [24] FAN J, HU X, YUE C Y. Dielectric properties of self-catalytic interpenetrating polymer network based on modified bismaleimide and cyanate ester resins[J]. Journal of Polymer Science: Part B. Polymer Physics, 2003, 41(11): 1123-1134. doi: 10.1002/(ISSN)1099-0488
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  9955
  • HTML全文浏览量:  2976
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-21
  • 网络出版日期:  2019-05-23
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回