高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

光响应型主客体超分子聚合物

刘秀军 马骧

刘秀军, 马骧. 光响应型主客体超分子聚合物[J]. 华东理工大学学报(自然科学版), 2019, 45(4): 517-527. doi: 10.14135/j.cnki.1006-3080.20190312001
引用本文: 刘秀军, 马骧. 光响应型主客体超分子聚合物[J]. 华东理工大学学报(自然科学版), 2019, 45(4): 517-527. doi: 10.14135/j.cnki.1006-3080.20190312001
LIU Xiujun, MA Xiang. Photo-Responsive Host-Guest Supramolecular Polymers[J]. Journal of East China University of Science and Technology, 2019, 45(4): 517-527. doi: 10.14135/j.cnki.1006-3080.20190312001
Citation: LIU Xiujun, MA Xiang. Photo-Responsive Host-Guest Supramolecular Polymers[J]. Journal of East China University of Science and Technology, 2019, 45(4): 517-527. doi: 10.14135/j.cnki.1006-3080.20190312001

光响应型主客体超分子聚合物

doi: 10.14135/j.cnki.1006-3080.20190312001
详细信息
    作者简介:

    刘秀军(1986-)女,河北人,博士,工程师,主要研究方向为有机超分子光电功能材料。E-mail:liuxiujun@ecust.edu.cn

    通讯作者:

    马 骧,E-mail: maxiang@ecust.edu.cn

  • 中图分类号: O621

Photo-Responsive Host-Guest Supramolecular Polymers

  • 摘要: 通过主客体非共价键作用将光响应基团引入超分子聚合物体系中可以获得光响应型超分子聚合物,此类聚合物在自愈合体系、聚集诱导发光、光控组装等领域具有重要应用。综述了近期基于冠醚、环糊精、杯芳烃、柱芳烃和葫芦脲为主体的光响应超分子聚合物的合成与性质,并对此类主客体超分子聚合物的发展前景进行了展望。

     

  • 图  1  基于主客体相互作用的超分子凝胶示意图[5]

    Figure  1.  Schematic diagram of the supramolecular hydrogel based on host-guest interactions[5]

    图  2  环糊精的化学结构、尺寸和物理性质[6]

    Figure  2.  Chemical structures, size and physical properties of cyclodextrins[6]

    图  3  PAA-mAzo / PAA-β-CD混合物的可逆凝胶-溶胶转变示意图(a)和照片(b)[8]

    Figure  3.  Schematic model (a) and photographs (b) of the reversible sol-gel transition of the PAA-mAzo/PAA-β-CD mixture[8]

    图  4  基于β-CD与α-溴萘主客体相互作用的快速自愈合型超分子聚合物水凝胶构建[9]

    Figure  4.  Construction of the rapidly self-healing supramolecular polymeric hydrogel based on host-guest interaction between β-CD and α-BrNp[9]

    图  5  Poly-BrNpA和γ-CD主客体相互作用的CD-RTP系统的示意图[10]

    Figure  5.  Schematic diagram of the CD-RTP system via host-guest interaction between poly-BrNpA and γ-CD[10]

    图  6  NIR / pH响应纳米复合水凝胶和化学光热协同癌症疗法的形成示意图[11]

    Figure  6.  Schematic illustration of the formation of NIR/pH-responsive nanocomposite hydrogel and chemo-photothermal synergistic cancer therapy[11]

    图  7  SCnA的结构(n= 4~8)[15]

    Figure  7.  Structures of SCnA (n = 4~8)[15]

    图  8  拟[3]轮烷R与杯芳烃 bis-SC4A组装构建光响应超分子聚合物P的示意图[17]

    Figure  8.  Schematic illustration for the construction of photo-responsive supramolecular polymer with pseudo[3]rotaxane R and bis-SC4A[17]

    图  9  典型的柱[n]芳烃主体分子的化学结构[20]

    Figure  9.  Chemical structures of typical pillar[n]arene (n=5~10) host molecules[20]

    图  10  聚集诱导发光超分子聚合物形成示意图[22]

    Figure  10.  Schematic illustration of the formation of an aggregation induced emission fluorescent supramolecular polymer network[22]

    图  11  基于双柱[5]芳烃和三氮唑相互作用合成具有聚集诱导发光特性的超分子聚合物[23]

    Figure  11.  Formation of the supramolecular polymer with aggregation induced emission properties based on the interaction between bis-pillar[5]arene and nitrile triazole[23]

    图  12  基于柱芳烃主客体相互作用的荧光超分子聚合物的形成[24]

    Figure  12.  Formation of the fluorescent supramolecular polymer based on orthogonal host-guest association[24]

    图  13  AA/BB型超分子聚合物的光诱导可逆转化[26]

    Figure  13.  Schematic illustration of the photo-controlled assembly and disassembly of an AA/BB supramolecular polymer[26]

    图  14  H,G0,G1和G2的化学结构以及两种具有FRET功能的超分子聚合物[27]

    Figure  14.  Structures of H, G0, G1 and G2, as well as the two supramolecular polymers with FRET functions[27]

    图  15  CB [n]同系物的合成和CB[7]的结构[28]

    Figure  15.  Synthesis of CB[n] homologues and different representations of CB[7] structure[28]

    图  16  基于Q[8]的智能发光材料示意图[32]

    Figure  16.  Schematic diagram of the Q[8] based approach for fabricating smart luminescent materials[32]

  • [1] SCHALLEY C A. Molecular recognition and supramolecular chemistry in the gas phase[J]. Mass Spectrom Review, 2002, 20(5): 253-309.
    [2] AIDA T, MEIJER E W, STUPP S I. Functional supramolecular polymers[J]. Science, 2012, 335: 813-817. doi: 10.1126/science.1205962
    [3] HAN Y, MENG Z, MA Y X, et al. Iptycene-derived crown ether hosts for molecular recognition and self-assembly[J]. Accounts of Chemical Research, 2014, 47(7): 2026-2040. doi: 10.1021/ar5000677
    [4] ZHENG B, WANG F, DONG S Y, et al. Supramolecular polymers constructed by crown ether-based molecular recognition[J]. Chemical Society Review, 2012, 41(5): 1621-1636. doi: 10.1039/C1CS15220C
    [5] LU C J, ZHANG M M, STANG P J. Fluorescent metallacage-core supramolecular polymer gel formed by orthogonal metal coordination and host-guest interactions[J]. Journal of the American Chemical Society, 2018, 140(24): 7674-7680. doi: 10.1021/jacs.8b03781
    [6] SCYPINSKI S, LOVE L J C. Cyclodextrin-induced room-temperature phosphorescence of nitrogen heterocycles and bridged biphenyls[J]. Analytical Chemistry, 1984, 56(3): 331-336. doi: 10.1021/ac00267a007
    [7] MA X, CAO J J, WANG Q C, et al. Photocontrolled reversible room temperature phosphorescence (RTP) encoding β-cyclodextrin pseudorotaxane[J]. Chemical Communications, 2011, 47(12): 3559-3561. doi: 10.1039/c0cc05488g
    [8] WANG D, WAGNER M, WU S, et al. Supramolecular hydrogels constructed by red-light-responsive host–guest interactions for photo-controlled protein release in deep tissue[J]. Soft Matter, 2015, 11: 7656-7662. doi: 10.1039/C5SM01888A
    [9] CHEN H, MA X, TIAN H. A rapidly self-healing supramolecular polymer hydrogel with photostimulated room-temperature phosphorescence responsiveness[J]. Angewandte Chemie: International Edition, 2014, 53(51): 14149-14152. doi: 10.1002/anie.v53.51
    [10] CHEN H, MA X, TIAN H, et al. Room temperature phosphorescence of 4-bromo-1, 8-naphthalic anhydride derivative-based polyacrylamide copolymer with photo-stimulated responsiveness[J]. Polymer Chemistry, 2016, 7(24): 3989-3992. doi: 10.1039/C6PY00703A
    [11] XU X Y, HUANG Z Y, ZHAO C S, et al. Injectable, NIR/pH-responsive nanocomposite hydrogel as long acting implant for chemophotothermal synergistic cancer therapy[J]. ACS Applied Materials & Interfaces, 2017, 9(24): 20361-20375.
    [12] QI Y, LI G, JIANG J Q, et al. Controlling CO2-responsive behaviors of polymersomes self-assembled by coumarin-containing star polymer via regulating its crosslinking pattern[J]. Macromolecular Rapid Communication, 2018, 39(11): 1800009. doi: 10.1002/marc.v39.11
    [13] LIU L, RUI L, ZHANG W, et al. A supramolecular approach for fabrication of photo-responsive block-controllable supramolecular polymers[J]. Polymer Chemistry, 2014, 5(18): 5453-5460. doi: 10.1039/C4PY00645C
    [14] ZOU H, YUAN W Z, LUA Y Q, et al. UV light- and thermo-responsive supramolecular aggregates with tunable morphologies from the inclusion complexation of dendritic/linear polymers[J]. Chemical Communications, 2017, 53(16): 2463-2466. doi: 10.1039/C6CC09959A
    [15] SHINKAI S, MORI S, TSUBAKI T, et al. New water-soluble host molecules derived from calix[6]arene[J]. Tetrahedron Letters, 1984, 25(46): 5315-5318. doi: 10.1016/S0040-4039(01)81592-6
    [16] GUO D S, LIU Y. Supramolecular chemistry of p-sulfonatocalix[n]arenes and its biological applications[J]. Accounts of Chemical Research , 2014, 47(7): 1925-1934. doi: 10.1021/ar500009g
    [17] SUN R Y, MA X, TIAN H, et al. Light-driven linear helical supramolecular polymer formed by molecular-recognition-directed self-assembly of bis(p sulfonatocalix[4]arene) and pseudorotaxane[J]. Journal of the American Chemical Society, 2013, 135(16): 5990-5993. doi: 10.1021/ja4016952
    [18] YAO X Y, MA X, TIAN H. Aggregation-induced emission encoding supramolecular polymers based on controllable sulfonatocalixarene recognition in aqueous solution[J]. Journal of Material Chemistry C, 2014, 2(26): 5155-5160. doi: 10.1039/c4tc00503a
    [19] OGOSHI T, KANAI S, FUJINAMI S, et al. para-Bridged symmetrical pillar[5]arenes: Their lewis acid catalyzed synthesis and host-guest property[J]. Journal of the American Chemical Society, 2008, 130(15): 5022-5023. doi: 10.1021/ja711260m
    [20] LI C. Pillararene-based supramolecular polymers: From molecular recognition to polymeric aggregates[J]. Chemical Communications, 2014, 50(83): 12420-12433. doi: 10.1039/C4CC03170A
    [21] XU J F, CHEN Y Z, WU L Z, et al. Dynamic covalent bond based on reversible photo [4+4] cycloaddition of anthracene for construction of double-dynamic polymers[J]. Organic Letters, 2013, 15(24): 6148-6151. doi: 10.1021/ol403015s
    [22] SHAO L, SUN J F, HUANG F H, et al. An AIEE fluorescent supramolecular cross-linked polymer network based on pillar[5]arene host-guest recognition: Construction and application in explosive detection[J]. Chemical Communications, 2018, 54(38): 4866-4869. doi: 10.1039/C8CC02077A
    [23] DHINAKARAN M K, GONG W T, YIN Y, et al. Configuration-independent AIE-active supramolecular polymers of cyanostilbene through the photo-stable host-guest interaction of pillar[5]arene[J]. Polymer Chemistry, 2017, 8(35): 5295-5302. doi: 10.1039/C7PY00845G
    [24] SHI B B, JIE K C, YAO Y, et al. Formation of fluorescent supramolecular polymeric assemblies via orthogonal pillar[5]arene-based molecular recognition and metal ion coordination[J]. Chemical Communications, 2015, 51(21): 4503-4506. doi: 10.1039/C5CC00535C
    [25] YANG J, LI Z, YU G, et al. Construction of a pillar[5]arene-based linear supramolecular polymer and a photo-responsive supramolecular network[J]. Polymer Chemistry, 2014, 5(23): 6645-6650. doi: 10.1039/C4PY01042F
    [26] WANG Y, SUN C L, YANG Q Z, et al. Photoresponsive AA/BB supramolecular polymers comprising stiff-stilbene based guests and bispillar[5]arenes[J]. Polymer Chemistry, 2017, 8(23): 3596-3602. doi: 10.1039/C7PY00326A
    [27] MENG L B, LI D Q, WANG L Y, et al. FRET-capable supramolecular polymers based on a BODIPY-bridged pillar[5]arene dimer with BODIPY guests for mimicking the light-harvesting system of natural photosynthesis[J]. Chemical Communications, 2015, 51: 4643-4646. doi: 10.1039/C5CC00398A
    [28] ASSAF K I, NAU W M. Cucurbiturils: From synthesis to high-affinity binding and catalysis[J]. Chemical Society Review, 2015, 44(2): 394-418. doi: 10.1039/C4CS00273C
    [29] MOCK W L, SHIH N Y. Dynamics of molecular recognition involving cucurbituril[J]. Journal of American Chemical Society, 1989, 111(7): 2697-2699. doi: 10.1021/ja00189a053
    [30] KIM J, JUNG I S, KIM K, et al. New cucurbituril homologues: Syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8)[J]. Journal of American Chemical Society, 2000, 122(3): 540-541. doi: 10.1021/ja993376p
    [31] VINCIGUERRA B, CAO L P, ISAACS L, et al. Synthesis and self-assembly processes of monofunctionalized cucurbit[7]uril[J]. Journal of American Chemical Society, 2012, 134(31): 13133-13140. doi: 10.1021/ja3058502
    [32] NI X L, CHEN S, TAO Z, et al. Facile cucurbit[8]uril-based supramolecular approach to fabricate tunable luminescent materials in aqueous solution[J]. Journal of the American Chemical Society, 2016, 138(19): 6177-6183. doi: 10.1021/jacs.6b01223
    [33] HUANG Z H, YANG L L, LIU Y L, et al. Supramolecular polymerization promoted and controlled through self-sorting[J]. Angewandte Chemie: International Edition, 2014, 53(21): 5351-5355. doi: 10.1002/anie.v53.21
  • 加载中
图(16)
计量
  • 文章访问数:  7746
  • HTML全文浏览量:  2190
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-12
  • 网络出版日期:  2019-04-25
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回