Synthesis of a Novel Cobalt Selenide/Carbon Composites with Polyacrylonitrile Coating and Application in Li-Ion Battery
-
摘要: 硒化钴因具有良好的脱嵌锂能力而被认为是理想的锂离子电池负极材料,但由于充放电过程中体积膨胀严重和导电性较差,限制了其电池性能。以钴基沸石咪唑骨架(ZIF)材料ZIF-67为前驱体,经过碳化和硒化处理得到硒化钴-碳复合物(CoSe2-C),再经过聚丙烯腈(PAN)包覆和热处理得到环化聚丙烯腈(c-PAN)包覆的硒化钴/碳复合材料(CoSe2-C/c-PAN)。该复合材料作为锂离子电池负极材料表现出了优异的比容量和循环稳定性,0.2 A/g条件下首次放电比容量达到1 440 mA·h/g,1.0 A/g条件下经过200次循环依然表现出高可逆比容量(653 mA·h/g)。这主要归因于环化聚丙烯腈链中的π键对材料中电子电导率和离子传输速率的提升效果,以及柔性高分子链的包覆有效缓解了材料充放电过程中的体积膨胀。Abstract: Cobalt selenide is an ideal anode material for lithium-ion batteries because of its good lithium-ion insertion or extraction capability. However, the battery performance of cobalt selenide is limited by the large volumetric expansion upon cycling and its insulating nature. In this study, we produced CoSe2-C/c-PAN by coating CoSe2-C polyhedrons with polyacrylonitrile (PAN) in N2 atmosphere. The CoSe2-C polyhedrons were successfully synthesized using Co-based zeolitic imidazolate framework (ZIF-67) as precursor through a two-step method, which includes carbonization of ZIF-67 and a subsequent selenization. The resultant CoSe2-C/c-PAN showed high specific capacity and excellent cycling stability with an initial discharge capacity of 1 440 mA·h/g at 0.2 A/g and a reversible capacity of 653 mA·h/g at 1.0 A/g after 200 cycles as anode material of Li-ion battery. The excellent battery performance of CoSe2-C/c-PAN could be attributed to the synergistic effect of nanostructured CoSe2 and carbon materials, in which the nanostructured CoSe2 possesses high reactivity towards lithium-ions and the carbon can provide a continuous conductive matrix to facilitate the charge transfer and an effective buffering to mitigate the structural variation of CoSe2 during cycling. The significantly enhanced electrochemical performance of the composite could be ascribed to the improved electrical conductivity and structural stability of c-PAN.
-
Key words:
- cobalt selenide /
- carbon /
- polyacrylonitrile /
- Li-ion battery anode
-
图 6 扫描速率0.1 mV/s下CoSe2-C(a)和CoSe2-C/c-PAN(b)的循环伏安曲线;CoSe2-C和CoSe2-C/c-PAN在0.2 A/g条件下的首次充放电曲线(c),0.2 A/g条件下的循环性能(d),倍率性能(e)和1.0 A/g条件下的长循环性能(f)及其库仑效率
Figure 6. Cyclic voltammetric curves of CoSe2-C (a) and CoSe2-C/c-PAN (b) at a scan rate of 0.1 mV/s; Initial charge/discharge curves at 0.2 A/g (c), cycling performance at 0.2 A/g (d), rate performance (e), long-term cycling performance (f) and their coulombic efficiencies at 1.0 A/g of CoSe2-C and CoSe2-C/c-PAN
表 1 各种过渡金属硒化物负极的循环性能比较
Table 1. Cycling performance comparison of various transition metal chalcogenide based anodes
Electrode
materialsCapacity/
(mA·h·g−1)Current density/(A·g−1) Cycle numbers Reference CoSe2-C/c-PAN 653 1 200 This work CoSe2-C 472 1 200 This work CoSe@C 660 1 100 [24] PbSe/rGO 300 0.2 100 [25] ZnSe/C 657 0.1 100 [26] α-MnSe nanocubes 150 1 120 [27] SnSe nanosheets 73 0.05 20 [28] α-FeSe nanoparticles 340 0.04 40 [29] -
[1] WU R, WANG D P, RUI X, et al. In-situ formation of hollow hybrids composed of cobalt sulfides: Embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium-ion batteries[J]. Advanced Materials, 2015, 27(19): 3038-3044. doi: 10.1002/adma.v27.19 [2] ZHU C, MU X, VAN AKEN P A, et al. Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage[J]. Angewandte Chemie International Edition, 2014, 53(8): 2152-2156. doi: 10.1002/anie.201308354 [3] CHOI S H, KANG Y C. Synthesis for yolk-shell-structured metal sulfide powders with excellent electrochemical performances for lithium-ion batteries[J]. Small, 2014, 10(3): 474-478. doi: 10.1002/smll.v10.3 [4] ZHOU J, WANG Y, ZHANG J, et al. Two dimensional layered Co0.85Se nanosheets as a high-capacity anode for lithium-ion batteries[J]. Nanoscale, 2016, 8(32): 14992-15000. doi: 10.1039/C6NR03571J [5] LI J, YAN D, LU T, et al. An advanced CoSe embedded within porous carbon polyhedra hybrid for high performance lithium-ion and sodium-ion batteries[J]. Chemical Engineering Journal, 2017, 325: 14-24. doi: 10.1016/j.cej.2017.05.046 [6] GU D, LI W, WANG F, et al. Controllable synthesis of mesoporous peapod-like Co3O4@carbon nanotube arrays for high-performance lithium-ion batteries[J]. Angewandte Chemie International Edition, 2015, 54(24): 7060-7064. doi: 10.1002/anie.201501475 [7] SUN H, SUN X, HU T, et al. Graphene-wrapped mesoporous cobalt oxide hollow spheres anode for high-rate and long-life lithium ion batteries[J]. The Journal of Physical Chemistry C, 2014, 118(5): 2263-2272. doi: 10.1021/jp408021m [8] PAN A, WU H B, YU L, et al. Template-free synthesis of VO2 hollow microspheres with various interiors and their conversion into V2O5 for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2013, 125(8): 2282-2286. [9] LIN J, PENG Z, XIANG C, et al. Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries[J]. Acsnano, 2013, 7(7): 6001-6006. [10] YU G, XIE X, PAN L, et al. Hybrid nanostructured materials for high-performance electrochemical capacitors[J]. Nano Energy, 2013, 2(2): 213-234. doi: 10.1016/j.nanoen.2012.10.006 [11] PIPER D M, YERSA T A, SON S B, et al. Conformal coatings of cyclized-PAN for mechanically resilient Si nano-composite anodes[J]. Advanced Energy Materials, 2013, 3(6): 697-702. doi: 10.1002/aenm.201200850 [12] PARK G D, KANG Y C. One-pot synthesis of CoSex–rGO composite powders by spray pyrolysis and their application as anode material for sodium-ion batteries[J]. Chemistry A European Journal, 2016, 22(12): 4140-4146. doi: 10.1002/chem.201504398 [13] QIN W, CHEN T, LU T, et al. Layered nickel sulfide-reduced graphene oxide composites synthesized via microwave-assisted method as high performance anode materials of sodium-ion batteries[J]. Journal of Power Sources, 2016, 302: 202-209. doi: 10.1016/j.jpowsour.2015.10.064 [14] LI Y J, FAN J M, ZHENG M S, et al. A novel synergistic composite with multi-functional effects for high-performance Li-S batteries[J]. Energy & Environmental Science, 2016, 9(6): 1998-2004. [15] LI H, GAO D, CHENG X. Simple microwave preparation of high activity Se-rich CoSe2/C for oxygen reduction reaction[J]. Electrochimica Acta, 2014, 138: 232-239. doi: 10.1016/j.electacta.2014.06.065 [16] SUSHAMA A R, DHARMADHIKARI J A, ATHAWALE A A, et al. Evidence for second-order optical nonlinearity in γ-Ray induced partially cross-linked polyacrylonitrile[J]. The Journal of Physical Chemistry B, 2001, 105(22): 5110-5113. doi: 10.1021/jp003438u [17] MORALES M S, OGALE A A. UV-induced crosslinking and cyclization of solution-cast polyacrylonitrile copolymer[J]. Journal of Applied Polymer Science, 2013, 128(3): 2081-2088. [18] WU M, WANG Q, LI K, et al. Optimization of stabilization conditions for electrospun polyacrylonitrile nanofibers[J]. Polymer Degradation and Stability, 2012, 97(8): 1511-1519. doi: 10.1016/j.polymdegradstab.2012.05.001 [19] JANUS R, NATHANSKI P, WACH A, et al. Thermal transformation of polyacrylonitrile deposited on SBA-15 type silica[J]. Journal of Thermal Analysis and Calorimetry, 2012, 110(1): 119-125. doi: 10.1007/s10973-011-2157-6 [20] QIU W, JIAO J, XIA J, et al. A self-standing and flexible electrode of yolk-shell CoS2 spheres encapsulated with nitrogen-doped graphene for high-performance lithium-ion batteries[J]. Chemistry, 2015, 21(11): 4359-4367. doi: 10.1002/chem.v21.11 [21] PENG S, HAN X, LI L, et al. Unique cobalt sulfide/reduced graphene oxide composite as an anode for sodium-ion batteries with superior rate capability and long cycling stability[J]. Small, 2016, 12(10): 1359-1368. doi: 10.1002/smll.v12.10 [22] ZHU J, CHEN C, LU Y, et al. Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries[J]. Carbon, 2015, 94: 189-195. doi: 10.1016/j.carbon.2015.06.076 [23] ZHANG K, HU Z, LIU X, et al. FeSe2 microspheres as a high-performance anode material for Na-ion batteries[J]. Advanced Materials, 2015, 27(21): 3305-3309. doi: 10.1002/adma.v27.21 [24] HU H, ZHANG J, GUAN B, et al. Unusual formation of CoSe@carbon nanoboxes, which have an inhomogeneous shell, for efficient lithium storage[J]. Angewandte Chemie International Edition, 2016, 55(33): 9514-9518. doi: 10.1002/anie.201603852 [25] XIE J, TU F, SU Q, et al. In situ TEM characterization of single PbSe/reduced-graphene-oxide nanosheet and the correlation with its electrochemical lithium storage performance[J]. Nano Energy, 2014, 5: 122-131. doi: 10.1016/j.nanoen.2014.03.001 [26] KWON H T, PARK C M. Electrochemical characteristics of ZnSe and its nanostructured composite for rechargeable Li-ion batteries[J]. Journal of Power Sources, 2014, 251: 319-324. doi: 10.1016/j.jpowsour.2013.11.033 [27] LI N, ZHANG Y, ZHAO H, et al. Synthesis of high-quality alpha-MnSe nanostructures with superior lithium storage properties[J]. Inorganic Chemistry, 2016, 55(6): 2765-2770. doi: 10.1021/acs.inorgchem.5b02558 [28] KANG S Z, JIA L, LI X, et al. Amine-free preparation of SnSe nanosheets with high crystallinity and their lithium storage properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 406: 1-5. [29] WEI D, LIANG J, ZHU Y, et al. Layer structured α-FeSe: A potential anode material for lithium storage[J]. Electrochemistry Communications, 2014, 38: 124-127. doi: 10.1016/j.elecom.2013.11.021 -