高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

N2和CO2稀释对CH4/O2扩散火焰反应区和结构特性的影响

杨家宝 何磊 祝慧雯 郭庆华 龚岩 于广锁

杨家宝, 何磊, 祝慧雯, 郭庆华, 龚岩, 于广锁. N2和CO2稀释对CH4/O2扩散火焰反应区和结构特性的影响[J]. 华东理工大学学报(自然科学版), 2019, 45(6): 853-859. doi: 10.14135/j.cnki.1006-3080.20180928002
引用本文: 杨家宝, 何磊, 祝慧雯, 郭庆华, 龚岩, 于广锁. N2和CO2稀释对CH4/O2扩散火焰反应区和结构特性的影响[J]. 华东理工大学学报(自然科学版), 2019, 45(6): 853-859. doi: 10.14135/j.cnki.1006-3080.20180928002
YANG Jiabao, HE Lei, ZHU Huiwen, GUO Qinghua, GONG Yan, YU Guangsuo. Effects of N2/CO2 on the Reaction Zone and Structure Characteristics of the CH4/O2 Diffusion Flame[J]. Journal of East China University of Science and Technology, 2019, 45(6): 853-859. doi: 10.14135/j.cnki.1006-3080.20180928002
Citation: YANG Jiabao, HE Lei, ZHU Huiwen, GUO Qinghua, GONG Yan, YU Guangsuo. Effects of N2/CO2 on the Reaction Zone and Structure Characteristics of the CH4/O2 Diffusion Flame[J]. Journal of East China University of Science and Technology, 2019, 45(6): 853-859. doi: 10.14135/j.cnki.1006-3080.20180928002

N2和CO2稀释对CH4/O2扩散火焰反应区和结构特性的影响

doi: 10.14135/j.cnki.1006-3080.20180928002
基金项目: 国家重点研发计划(2017YFB0602404);国家自然科学基金项目(21676091)
详细信息
    作者简介:

    杨家宝(1996–),男,河北秦皇岛人,硕士生,主要研究方向为气化火焰燃烧特性。E-mail:jbyang_ecust@126.com

    通讯作者:

    于广锁,E-mail:gsyu@ecust.edu.cn

    郭庆华,E-mail:gqh@ecust.edu.cn

  • 中图分类号: O433.52

Effects of N2/CO2 on the Reaction Zone and Structure Characteristics of the CH4/O2 Diffusion Flame

  • 摘要: 利用紫外成像系统获得了CH4/O2同轴射流扩散火焰的OH*二维辐射分布,并对其进行了Abel逆变换处理。基于OH*分布特性的变化,重点探究了氧化剂中N2和CO2体积分数对火焰反应区和结构特性的影响,并进一步比较了两种稀释火焰反应区和结构特性的区别。结果表明:随稀释剂体积分数增加,火焰更加细长。在稀释剂体积分数相同的条件下,CO2稀释时火焰具有更为狭窄的火焰锋面,且OH*辐射强度显著低于N2稀释火焰。稀释剂体积分数的增加使OH*的生成机理发生改变,从而导致火焰的核心反应区发生位移。火焰反应区的轴向高度随稀释剂体积分数的增加呈先增大后减小的变化趋势。与N2稀释火焰相比,反应机理转变对CO2稀释火焰反应区轴向高度的影响更大。

     

  • 图  1  实验装置示意图

    Figure  1.  Schematic diagram of the experimental setup

    图  2  稀释剂体积分数不同时火焰的OH*二维辐射分布

    Figure  2.  OH* chemiluminescence distribution for the flames with different volume fractions of diluent

    图  3  稀释剂体积分数不同时归一化处理的OH*二维辐射分布

    Figure  3.  Normalized OH* chemiluminescence distribution with different volume fractions of diluent

    图  4  N2和CO2稀释火焰的OH*辐射峰值位置变化

    Figure  4.  Variation of the peak OH* chemiluminescence location for N2 and CO2 diluted flames

    图  5  N2和CO2稀释火焰的反应区轴向高度变化

    Figure  5.  Axial height variation of the flame reaction zone for N2 and CO2 diluted flames

    表  1  N2和CO2稀释火焰实验条件

    Table  1.   Experimental conditions for N2 and CO2 diluted flames

    QD/(L·min−1)UD/(cm·s−1)φD/%$Re_{\rm N_2} $$Re_{\rm CO_2} $
    0.1535.3723.164.1969.92
    0.2047.1628.663.4571.74
    0.2558.9533.363.7274.88
    0.3070.7337.564.8379.16
    0.3582.5241.266.6384.40
    0.4094.3144.469.0290.48
    0.45106.1047.471.9297.28
    0.50117.8950.075.25104.72
    0.55129.6852.478.96112.72
    0.60141.4754.582.99121.21
    0.65153.2656.587.32130.13
    下载: 导出CSV
  • [1] GAYDON A G. The Spectrocopy of Flames[M]. London: Chapman and Hall, 1957.
    [2] 张婷, 郭庆华, 龚岩, 等. CH4/O2同轴射流扩散火焰辐射发光特性[J]. 燃烧科学与技术, 2012, 18(4): 353-358.
    [3] DONBAR J M, DRISCOLL J F, CARTER C D. Reaction zone structure in turbulent nonpremixed jet flames—from CH−OH PLIF images[J]. Combustion and Flame, 2000, 122(1/2): 1-19.
    [4] 董志, 梁钦锋, 台培杰, 等. 液化气扩散火焰的分布结构特征[J]. 华东理工大学学报(自然科学版), 2010, 36(1): 31-35. doi: 10.3969/j.issn.1006-3080.2010.01.006
    [5] BALLESTER J, GARCÍA-ARMINGOL T. Diagnostic techniques for the monitoring and control of practical flames[J]. Progress in Energy and Combustion Science, 2010, 36(4): 375-411. doi: 10.1016/j.pecs.2009.11.005
    [6] KIEFER J, LI Z S, ZETTERBERG J, et al. Investigation of local flame structures and statistics in partially premixed turbulent jet flames using simultaneous single-shot CH and OH planar laser-induced fluorescence imaging[J]. Combustion and Flame, 2008, 154(4): 802-818. doi: 10.1016/j.combustflame.2008.04.002
    [7] PANOUTSOS C S, HARDALUPAS Y, TAYLOR A M K P. Numerical evaluation of equivalence ratio measurement using OH* and CH* chemiluminescence in premixed and non-premixed methane-air flames[J]. Combustion and Flame, 2009, 156(2): 273-291. doi: 10.1016/j.combustflame.2008.11.008
    [8] KOJIMA J, IKEDA Y, NAKAJIMA T. Basic aspects of OH(A), CH(A), and C2(d) chemiluminescence in the reaction zone of laminar methane-air premixed flames[J]. Combustion and Flame, 2005, 140(1/2): 34-45.
    [9] WALSH K T, FIELDING J, SMOOKE M D, et al. A comparison of computational and exper-imental lift-off heights of coflow laminar diffusion flames[J]. Proceedings of the Combustion Institute, 2005, 30(1): 357-365. doi: 10.1016/j.proci.2004.08.186
    [10] CAO S, MA B, BENNETT B A V, et al. A computational and experimental study of coflow laminar methane/air diffusion flames: Effects of fuel dilution, inlet velocity, and gravity[J]. Proceedings of the Combustion Institute, 2015, 35(1): 897-903. doi: 10.1016/j.proci.2014.05.138
    [11] GUIBERTI T F, DUROX D, SCHULLER T. Flame chemiluminescence from CO2- and N2-diluted laminar CH4/air premixed flames[J]. Combustion and Flame, 2017, 181: 110-122. doi: 10.1016/j.combustflame.2017.01.032
    [12] JEONGSEOG O H. Spectral characteristics of a premixed oxy-methane flame in atmospheric conditions[J]. Energy, 2016, 116: 986-997.
    [13] BISWAS D, MUKHOPADHYAY A. Effect of CO2 and O2 enhancement and gravity variations on normal and inverse laminar diffusion flames[J]. Materials Today: Proceedings, 2016, 3(10): 3318-3327. doi: 10.1016/j.matpr.2016.10.013
    [14] CHO Y T, NA S. Application of Abel inversion in real-time calculations for circularly and elliptically symmetric radiation sources[J]. Measurement Science and Technology, 2005, 16(3): 878-884. doi: 10.1088/0957-0233/16/3/032
    [15] ZHU H W, HU C H, GUO Q H, et al. Investigation on chemiluminescence and structure characteristics in CH4/O2 diffusion flames[J]. Experimental Thermal and Fluid Science, 2019, 102: 595-602. doi: 10.1016/j.expthermflusci.2018.10.017
    [16] BOWMAN C T, SEERY D J. Chemiluminescence in the high-temperature oxidation of methane[J]. Combustion and Flame, 1968, 12(6): 611-614. doi: 10.1016/0010-2180(68)90080-1
    [17] CHARTON M, GAYDON A G. Excitation of spectra of OH in hydrogen flames and its relation to excess concentrations of free atoms[J]. Proceedings of the Royal Society A, 1958, 245(1240): 84-92. doi: 10.1098/rspa.1958.0068
    [18] HIDAKA Y, TAKAHASHI S, KAWANO H, et al. Shocktube measurement of the rate constant for excited hydroxyl(A2Σ+) formation in the hydrogen-oxygen reaction[J]. Journal of Physical Chemistry, 1982, 86(8): 1429-1433. doi: 10.1021/j100397a043
    [19] KATHROTIA T, FIKRI M, BOZKURT M, et al. Study of the H+O+M reaction forming OH*: Kinetics of OH* chemiluminescence in hydrogen combustion systems[J]. Combustion and Flame, 2010, 157(7): 1261-1273. doi: 10.1016/j.combustflame.2010.04.003
    [20] 何磊, 龚岩, 郭庆华, 等. 甲烷/氧气层流同轴射流扩散火焰OH*自由基的数值研究[J]. 光谱学与光谱分析, 2018, 38(3): 685-691.
    [21] LEO M D, SAVELIEV A, KENNEDY L A, et al. OH and CH luminescence in opposed flow methane oxy-flames[J]. Combustion and Flame, 2007, 149(4): 435-447. doi: 10.1016/j.combustflame.2007.01.008
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  7782
  • HTML全文浏览量:  2223
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-11
  • 网络出版日期:  2019-09-27
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回