高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

氧化石墨烯功能化磁性空心球的制备及载药性能

殷红霞 杨宇翔 黄艳 赵怡 倪超英

殷红霞, 杨宇翔, 黄艳, 赵怡, 倪超英. 氧化石墨烯功能化磁性空心球的制备及载药性能[J]. 华东理工大学学报(自然科学版), 2019, 45(6): 873-882. doi: 10.14135/j.cnki.1006-3080.20180926001
引用本文: 殷红霞, 杨宇翔, 黄艳, 赵怡, 倪超英. 氧化石墨烯功能化磁性空心球的制备及载药性能[J]. 华东理工大学学报(自然科学版), 2019, 45(6): 873-882. doi: 10.14135/j.cnki.1006-3080.20180926001
YIN Hongxia, YANG Yuxiang, HUANG Yan, ZHAO Yi, NI Chaoying. Preparation and Drug Delivery of Graphene Oxide Decorated Hollow Magnetic Nanoparticles[J]. Journal of East China University of Science and Technology, 2019, 45(6): 873-882. doi: 10.14135/j.cnki.1006-3080.20180926001
Citation: YIN Hongxia, YANG Yuxiang, HUANG Yan, ZHAO Yi, NI Chaoying. Preparation and Drug Delivery of Graphene Oxide Decorated Hollow Magnetic Nanoparticles[J]. Journal of East China University of Science and Technology, 2019, 45(6): 873-882. doi: 10.14135/j.cnki.1006-3080.20180926001

氧化石墨烯功能化磁性空心球的制备及载药性能

doi: 10.14135/j.cnki.1006-3080.20180926001
基金项目: 国家自然科学基金项目(20577010,20971043)
详细信息
    作者简介:

    殷红霞(1992-),女,甘肃张掖人,硕士生,从事磁性材料研究。E-mail:yhxgoal520@163.com

    通讯作者:

    杨宇翔,E-mail:yxyang@ecust.edu.cn

  • 中图分类号: O614.81

Preparation and Drug Delivery of Graphene Oxide Decorated Hollow Magnetic Nanoparticles

  • 摘要: 以纳米碳球和十六烷基三甲基溴化铵(CTAB)为双模板合成了具有介孔核-壳结构的纳米复合材料;并通过刻蚀法,制备了磁性介孔纳米空心球(HMNPs);在交联剂1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)和N-羟基硫代琥珀酰亚胺(NHS)的作用下,制备了氧化石墨烯(GO)功能化的磁性介孔纳米空心球(HMNPs-GO)。利用红外光谱(FT-IR)、X-射线粉末衍射(XRD)、拉曼光谱(Raman)、扫描电镜(SEM)、透射电镜(TEM)和振动样品磁强计(VSM)等方法进行了表征。通过研究HMNPs-GO对藤黄酸(GA)的吸附等温线,得出HMNPs-GO对GA的吸附主要为两者之间的π-π堆积,且属于Freundlich吸附。同时,基于Bhaskar模型和准一级、准二级动力学模型,分别探讨了HMNPs-GO中GA药物分子的扩散机理和缓释动力学,得出GA在HMNPs-GO中的缓释具有pH依赖性,且在不同pH下的缓释更适合于准二级动力学模型。

     

  • 图  1  HMNPs-GO合成路线

    Figure  1.  Schematic diagram of the preparation of HMNPs-GO

    图  2  HMNPs的TEM图

    Figure  2.  TEM images of HMNPs

    图  3  GO (a), HMNPs (b), HMNPs-GO (c~d)的SEM图

    Figure  3.  SEM images of GO (a), HMNPs (b), HMNPs-GO (c~d)

    图  4  (a) GO, mSiO2和HMNPs-GO的XRD; (b) GO, Fe3O4, HMNPs和HMNPs-GO的红外谱图

    Figure  4.  (a) XRD patterns of GO, mSiO2 and HMNPs-GO; (b) FT-IR spectra of GO, Fe3O4, HMNPs and HMNPs-GO

    图  5  HMNPs-GO和GO的拉曼光谱图

    Figure  5.  Raman spectra of HMNPs-GO and GO

    图  6  HMNPs的N2吸附-脱附曲线与孔径分布图

    Figure  6.  N2 adsorption-desorption isotherm and pore size distribution of HMNPs

    图  7  HMNPs和HMNPs-GO的磁滞回线

    Figure  7.  Magnetization hysteresis curves of HMNPs and HMNPs-GO

    图  8  HMNPs-GO对GA的吸附等温线

    Figure  8.  Adsorption isotherm of GA on HMNPs-GO

    图  9  HMNPs-GO对GA的Langmuir (a)和Freundlich (b)等温吸附负载线性拟合

    Figure  9.  Langmuir isotherm model (a) and Freundlich isotherm model (b) for adsorption and loading of GA on HMNPs-GO

    图  10  (a) HMNPs-GO对GA在pH=7.4时的负载率和(b) HMNPs-GO-GA对GA在pH=5.7和7.4时的缓释率

    Figure  10.  (a) GA loading rate of HMNPs-GO at pH=7.4; (b) GA released rate of HMNPs-GO-GA at pH=5.7 and 7.4

    图  11  在pH=5.7 (a)和pH=7.4 (b)时,GA从HMNPs-GO中的缓释率与t0.65的关系

    Figure  11.  Released rate of GA from HMNPs-GO vs. t0.65 at pH=5.7 (a) and pH=7.4 (b)

    图  12  不同pH环境下的HMNPs-GO准一级和准二级动力学曲线

    Figure  12.  Kinetics curves of Quasi-first-order reaction and quasi-second-order reaction for the release of GA from HMNPs-GO at different pH

    表  1  HMNPs-GO和HMNPs对不同质量GA的负载(37 ℃, pH=7.4)

    Table  1.   Loading of HMNPs-GO and HMNPs for different mass of GA

    m(GA)/mgHMNPs-GOHMNPs
    Drug loading/mgEffective loading/(mg·g−1)Drug loading/mg
    1.00.9447.110.56
    1.51.2562.600.79
    2.51.8089.821.01
    5.02.18109.201.21
    7.52.62130.951.39
    103.28163.801.74
    下载: 导出CSV

    表  2  不同pH下GA释放的的准二级方程拟合参数

    Table  2.   Fitting parameters of quasi-second-order reaction kinetics for GA releasing at different pH

    pHEquationR2Qe/(mg·g−1)v0/ (mg·(g·h)−1)
    5.7y=0.006 1x+0.056 40.998 1162.866 417.727
    7.4y=0.014 9x+0.065 10.999 367.249 515.370
    下载: 导出CSV
  • [1] VEISEH O, GUNN J W, ZHANG M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging[J]. Advance Drug Delivery Reviews, 2010, 62(3): 284-304. doi: 10.1016/j.addr.2009.11.002
    [2] WANG S B. Ordered mesoporous materials for drug delivery[J]. Microporous and Mesoporous Materials, 2009, 117(1/2): 1-9. doi: 10.1016/j.micromeso.2008.07.002
    [3] ZHAO W R, GU J L, ZHANG L X, et al. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure[J]. Journal of the American Chemical Society, 2005, 127(25): 8916-8917. doi: 10.1021/ja051113r
    [4] SHENG W, WEI W, LI J, et al. Amine-functionalized magnetic mesoporous silica nanoparticles for DNA separation[J]. Applied Surface Science, 2016, 387: 1116-1124. doi: 10.1016/j.apsusc.2016.07.061
    [5] ZHAO W, CHEN H, LI Y, et al. Uniform rattle-type hollow magnetic mesoporous spheres as drug delivery carriers and their sustained-release property[J]. Advanced Functional Materials, 2008, 18(18): 2780-2788. doi: 10.1002/adfm.200701317
    [6] ZHANG L, QIAO S Z, JIN Y G, et al. Magnetic hollow spheres of periodic mesoporous organosilica and Fe3O4 nanocrystals: Fabrication and structure control[J]. Advanced Materials, 2008, 20(4): 805-809. doi: 10.1002/adma.200700900
    [7] LIANG F X, GE C W, ZHANG T F, et al. Plasmonic hollow gold nanoparticles induced high-performance Bi2S3 nanoribbon photodetector[J]. Nanophotonics, 2017, 6(2): 494-501.
    [8] ZHANG J X, SUN W, BERGMAN L, et al. Magnetic mesoporous silica nanospheres as DNA/drug carrier[J]. Materials Letters, 2012, 67(1): 379-382. doi: 10.1016/j.matlet.2011.09.086
    [9] WANG J, FANG J, FANG P, et al. Preparation of hollow core/shell Fe3O4@graphene oxide composites as magnetic targeting drug nanocarriers[J]. Journal of Biomaterials Science: Polymer Edition, 2017, 28(4): 337-349. doi: 10.1080/09205063.2016.1268463
    [10] DOWAIDAR M, ABDELHAMID H N, LLBRINK H M, et al. Graphene oxide nanosheets in complex with cell penetrating peptides for oligonucleotides delivery[J]. Biochimica & Biophysica Acta (BBA)-General Subjects, 2017, 1861(9): 2334-2341. doi: 10.1016/j.bbagen.2017.07.002
    [11] LEE J, KIM J, KIM S, et al. Biosensors based on graphene oxide and its biomedical application[J]. Advance Drug Delivery Reviews, 2016, 105: 275-287.
    [12] LIU Z, ROBINSON J T, SUN X, et al. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs[J]. Journal of the American Chemical Society, 2008, 130(33): 10876-10877. doi: 10.1021/ja803688x
    [13] YANG X Y, ZHANG X Y, LIU Z F, et al. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide[J]. Journal of Physical Chemistry C, 2008, 112(45): 17554-17558. doi: 10.1021/jp806751k
    [14] BORSE P H, JUN H, CHOI S H, et al. Phase and photoelectrochemical behavior of solution-processed Fe2O3 nanocrystals for oxidation of water under solar light[J]. Applied Physics Letters, 2008, 93(17): 173103. doi: 10.1063/1.3005557
    [15] LUO Q P, YU X Y, LEI B X, et al. Reduced graphene oxide-hierarchical ZnO hollow sphere composites with enhanced photocurrent and photocatalytic activity[J]. Journal of Physical Chemistry C, 2012, 116(14): 8111-8117. doi: 10.1021/jp2113329
    [16] YANG Y, LIU Y, CHENG C, et al. Rational design of GO-modified Fe3O4/SiO2 nanoparticles with combined rhenium-188 and gambogic acid for magnetic target therapy[J]. ACS Applied Materials and Interfaces, 2017, 9(34): 28195-28208. doi: 10.1021/acsami.7b07589
    [17] YANG Y X, WU J D, HUANG M J, et al. Adsorption isotherms for benzene on diatomites from China[J]. Chinese Journal of Chemistry, 2000, 18(2): 158-164.
    [18] XU L, DAI J, PAN J, et al. Performance of rattle-type magnetic mesoporous silica spheres in the adsorption of single and binary antibiotics[J]. Chemical Engineering Journal, 2011, 174(1): 221-230. doi: 10.1016/j.cej.2011.09.003
    [19] WANG Z L, YANG Y X, QU X P, et al. Decolouring mechanism of Zhejiang diatomite: Application to printing and dyeing wastewater[J]. Environmental Chemistry Letters, 2005, 3(1): 33-37. doi: 10.1007/s10311-005-0109-8
    [20] BHASKAR R, MURTHY R S R, MIGLANI B D, et al. Novel method to evaluate diffusion controlled release of drug from resinate[J]. International Journal of pharmaceutics, 1986, 28(1): 59-66.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  6813
  • HTML全文浏览量:  2131
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-19
  • 网络出版日期:  2019-10-15
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回