高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

分子内弱相互作用对共轭性的影响

张融 周颖 晏琦帆

张融, 周颖, 晏琦帆. 分子内弱相互作用对共轭性的影响[J]. 华东理工大学学报(自然科学版), 2019, 45(6): 899-909. doi: 10.14135/j.cnki.1006-3080.20180902001
引用本文: 张融, 周颖, 晏琦帆. 分子内弱相互作用对共轭性的影响[J]. 华东理工大学学报(自然科学版), 2019, 45(6): 899-909. doi: 10.14135/j.cnki.1006-3080.20180902001
ZHANG Rong, ZHOU Ying, YAN Qifan. Influences of Intramolecular Weak Interactions on Conjugation[J]. Journal of East China University of Science and Technology, 2019, 45(6): 899-909. doi: 10.14135/j.cnki.1006-3080.20180902001
Citation: ZHANG Rong, ZHOU Ying, YAN Qifan. Influences of Intramolecular Weak Interactions on Conjugation[J]. Journal of East China University of Science and Technology, 2019, 45(6): 899-909. doi: 10.14135/j.cnki.1006-3080.20180902001

分子内弱相互作用对共轭性的影响

doi: 10.14135/j.cnki.1006-3080.20180902001
基金项目: 国家自然科学基金
详细信息
    作者简介:

    张融:张 融(1993-),女,江苏人,硕士生,主要从事光电材料的研究与应用。E-mail:Crystal_zhangrong@outlook.com

    通讯作者:

    晏琦帆,E-mail:yanqifan@ecust.edu.cn

  • 中图分类号: O69

Influences of Intramolecular Weak Interactions on Conjugation

  • 摘要: 以[2,2]对环蕃、三蝶烯、9,9’-螺二芴为连接单元,通过Buchwald-Hartwig/Suzuki偶联反应,连接富电子二苯氨基/缺电子萘酰亚胺片段,合成了化合物1~6和化合物7~12。在化合物1~67~12中,两个富电子中心或两个缺电子中心通过本共轭、交叉共轭、π-π堆积以及直接π-共轭方式连接。光物理和电化学测试表明,中性状态下基态共轭性以直接π-共轭最好,本共轭、交叉共轭次之,π-π堆积最差;在正离子自由基状态下共轭性以直接π-共轭最好,本共轭、交叉共轭次之且相近;负离子状态下共轭性则由于缺电子中心和连接单元之间的π-共轭作用被π-平面之间的扭转角削弱,化合物7~12中的连接方式都未能体现出差异。

     

  • 图  1  化合物1~6的合成

    Figure  1.  Synthesis of compound 1~6

    图  2  化合物7~12的合成

    Figure  2.  Synthesis of compound 7~12

    图  3  化合物的紫外-可见吸收光谱

    Figure  3.  UV-Vis absorption spectra of compounds

    图  4  化合物的荧光发射光谱

    Figure  4.  Fluorescence emission spectra of compounds

    图  5  化合物1~6的(a)循环伏安曲线;(b)差分脉冲伏安曲线

    Figure  5.  (a) Cyclic voltammetry and (b) differential pulse voltammetry curves of compound 1~6

    图  6  逐步氧化的化合物4的自由基阳离子的紫外-可见-近红外吸收光谱

    Figure  6.  UV-vis-NIR absorption spectra of the stepwise chemical oxidation of compound 4

    图  7  化合物7~12的(a)循环伏安曲线;(b)差分脉冲伏安曲线

    Figure  7.  (a) Cyclic voltammetry and (b) differential pulse voltammetry curves of compound 7~12

    表  1  化合物1~12的表征数据

    Table  1.   Characterization data of compounds 1~12

    Compounds λ/nm First oxidation potential/V Second oxidation potential/V Oxidation potential difference/V Reduction potential/V
    Absorption peak Emission peak
    1 295 349 0.54
    2 310 368 0.45 0.54 0.09
    3 308,353 386 0.47 0.58 0.11
    4 382 406 0.21 0.50 0.29
    5 310 394 0.42 0.49 0.07
    6 306 398 0.51 0.59 0.08
    7 370 431 −1.77
    8 360 420 −1.81
    9 372 438 −1.74
    10 378 437 −1.71
    11 360 419 −1.73
    12 358 418 −1.70
    下载: 导出CSV
  • [1] YERSIN H. Highly Efficient OLEDs with Phosphorescent Materials[M]. [s. l.]: John Wiley & Sons, 2008.
    [2] OSTROVERKHOVA O. Organic optoelectronic materials: Mechanisms and applications[J]. Chemical Reviews, 2016, 116(22): 13279-13412. doi: 10.1021/acs.chemrev.6b00127
    [3] DOU L, YOU J, HONG Z, et al. 25th Anniversary article: A decade of organic/polymeric photovoltaic research[J]. Advanced Materials, 2013, 25(46): 6642-6671. doi: 10.1002/adma.201302563
    [4] WANG C, DONG H, ZHU D, et al. Semiconducting π-conjugated systems in field-effect transistors: A material odyssey of organic electronics[J]. Chemical Reviews, 2011, 112(4): 2208-2267.
    [5] LI Q, LIU S, CHEN H, et al. Alignment and patterning of organic single crystals for field-effect transistors[J]. Chinese Chemical Letters, 2016, 27(8): 1421-1428. doi: 10.1016/j.cclet.2016.06.027
    [6] KATZ H, BAO Z, GILAT S. Synthetic chemistry for ultrapure, processable, and high-mobility organic transistor semiconductors[J]. Accounts of Chemical Research, 2001, 34(5): 359-369. doi: 10.1021/ar990114j
    [7] MAS-TORRENT M, ROVIRA C. Role of molecular order and solid-state structure in organic field-effect transistors[J]. Chemical Reviews, 2011, 111(8): 4833-4856. doi: 10.1021/cr100142w
    [8] BEAUJUGE P, FRÉCHET J. Molecular design and ordering effects in π-functional materials for transistor and solar cell applications[J]. Journal of the American Chemical Society, 2011, 133(50): 20009-20029. doi: 10.1021/ja2073643
    [9] DOU J, ZHENG Y Q, LEI T, et al. Fine-tuning of crystal packing and charge transport properties of BDOPV derivatives through fluorine substitution[J]. Journal of the American Chemical Society, 2015, 137(50): 15947-15956. doi: 10.1021/jacs.5b11114
    [10] OBERHOFER H, REUTER K, BLUMBERGER J. Charge transport in molecular materials: An assessment of computational methods[J]. Chemical Reviews, 2017, 117(15): 10319-10357. doi: 10.1021/acs.chemrev.7b00086
    [11] ZHU X, TSUJI H, LOPEZ N, et al. Carbon-bridged oligo (phenylenevinylene)s: Stable π-systems with high responsiveness to doping and excitation[J]. Journal of the American Chemical Society, 2012, 134(46): 19254-19259. doi: 10.1021/ja309318s
    [12] IKEMOTO K, KOBAYASHI R, SATO S, et al. Synthesis and bowl‐in‐bowl assembly of a geodesic phenylene bowl[J]. Angewandte Chemie International Edition, 2017, 56(23): 6511-6514. doi: 10.1002/anie.201702063
    [13] SHI P, AMB C M, KNOTT E P, et al. Broadly absorbing black to transmissive switching electrochromic polymers[J]. Advanced Materials, 2010, 22(44): 4949-4953. doi: 10.1002/adma.201002234
    [14] WANG Y, GUO H, LING S, et al. Ladder‐type heteroarenes: Up to 15 rings with five imide groups[J]. Angewandte Chemie International Edition, 2017, 56(33): 9924-9929. doi: 10.1002/anie.201702225
    [15] GENG Y, D'ALEO A, INADA K, et al. Donor-σ-acceptor motifs: Thermally activated delayed fluorescence emitters with dual upconversion[J]. Angewandte Chemie International Edition, 2017, 129(52): 16763-16767.
    [16] MORISAKI Y, SHIBATA S, CHUJO Y. [2.2]- Paracyclophane-based single molecular wire consisting of four π-electron systems[J]. Canadian Journal of Chemistry, 2016, 95(4): 424-431.
    [17] HECKMANN A, LAMBERT C. Organic mixed‐valence compounds: Aplayground for electrons and holes[J]. Angewandte Chemie International Edition, 2012, 51(2): 326-392. doi: 10.1002/anie.201100944
    [18] DENGIZ C, DUMELE O, KATO S, et al. From homoconjugated push–pull chromophores to donor–acceptor‐substituted spiro systems by thermal rearrangement[J]. Chemistry: A European Journal, 2014, 20(5): 1279-1286. doi: 10.1002/chem.201303533
    [19] SCHAFER J, HOLZAPFEL M, MLADENOVA B, et al. Hole transfer processes in meta-and para-conjugated mixed valence compounds: Unforeseen effects of bridge substituents and solvent dynamics[J]. Journal of the American Chemical Society, 2017, 139(17): 6200-6209. doi: 10.1021/jacs.7b01650
    [20] REICH H J, CRAM D J. Macro rings XXXVII. multiple electrophilic substitution reactions of [2,2] paracyclophanes and interconversions of polysubstituted derivatives[J]. Journal of the American Chemical Society, 1969, 91(13): 3527-3533. doi: 10.1021/ja01041a017
    [21] CHEN Z, SWAGER T M. Synthesis and characterization of poly(2,6-triptycene)[J]. Macromolecules, 2008, 41(19): 6880-6885. doi: 10.1021/ma8012527
    [22] REN W, ZHUANG H, BAO Q, et al. Enhancing the coplanarity of the donor moiety in a donor-acceptor molecule to improve the efficiency of switching phenomenon for flash memory devices[J]. Dyes and Pigments, 2014, 100: 127-134. doi: 10.1016/j.dyepig.2013.09.002
    [23] THIEMANN F, PIEHLER T, HAASE D. Synthesis of enantiomerically pure dissymmetric 2,2’-disubstituted-9,9’-Spirobifluorenes[J]. European Journal of Organic Chemistry, 2005, 10: 1991-2001.
    [24] WONG K T, LIAO Y L, PENG S M. A novel right-angled ligand that forms polymeric metal-organic frameworks with nanometer-sized square cavities[J]. Crystal Growth Design, 2005, 5(2): 667-671. doi: 10.1021/cg049822o
    [25] MA X, SALINAS O, LITWILLER E, et al. Novel spirobifluorene and dibromospirobifluorene-based polyimides of intrinsic microporosity for gas separation applications[J]. Macromolecules, 2013, 46(24): 9618-9624. doi: 10.1021/ma402033z
    [26] XU S, CHEN H H, XU H J. Copper-promoted reductive coupling of aryl iodides with 1,1,1-trifluoro-2-iodoethane[J]. Organic Letters, 2014, 16(9): 2306-2309. doi: 10.1021/ol500696p
    [27] FRANCKE R, LITTLE R D. Optimizing electron transfer mediators based on arylimidazoles by ring fusion: Synthesis, electrochemistry, and computational analysis of 2-aryl-1-methylphenanthro[9,10-d]imidazoles[J]. Journal of the American Chemical Society, 2014, 136(1): 427-435. doi: 10.1021/ja410865z
    [28] NADEZDA F, THIEO H E. Synthesis and characterization of macrocyclic poly(fluorine-3,6-diyl)[J]. Macromolecules, 2008, 41(11): 3765-3768. doi: 10.1021/ma800635w
    [29] PEI J, NI J, LAI Y H. Head-to-tail regioregular oligothiophene-functionalized 9,9’-siprobifluorene derivatives: 1. Synthesis[J]. Journal of Organic Chemistry, 2002, 67(14): 4924-4936. doi: 10.1021/jo011146z
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  6668
  • HTML全文浏览量:  1970
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-07
  • 网络出版日期:  2019-10-09
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回