高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

不同分子量聚乙烯吡咯烷酮对多壁碳纳米管分散性能的影响

尚旭 景希玮 徐健 郑柏存 公维光

尚旭, 景希玮, 徐健, 郑柏存, 公维光. 不同分子量聚乙烯吡咯烷酮对多壁碳纳米管分散性能的影响[J]. 华东理工大学学报(自然科学版), 2019, 45(6): 883-890. doi: 10.14135/j.cnki.1006-3080.20180820002
引用本文: 尚旭, 景希玮, 徐健, 郑柏存, 公维光. 不同分子量聚乙烯吡咯烷酮对多壁碳纳米管分散性能的影响[J]. 华东理工大学学报(自然科学版), 2019, 45(6): 883-890. doi: 10.14135/j.cnki.1006-3080.20180820002
SHANG Xu, JING Xiwei, XU Jian, ZHENG Baicun, GONG Weiguang. Influence of Polyvinylpyrrolidone with Different Molecular Weights on the Dispersion of Multiwalled Carbon Nanotubes[J]. Journal of East China University of Science and Technology, 2019, 45(6): 883-890. doi: 10.14135/j.cnki.1006-3080.20180820002
Citation: SHANG Xu, JING Xiwei, XU Jian, ZHENG Baicun, GONG Weiguang. Influence of Polyvinylpyrrolidone with Different Molecular Weights on the Dispersion of Multiwalled Carbon Nanotubes[J]. Journal of East China University of Science and Technology, 2019, 45(6): 883-890. doi: 10.14135/j.cnki.1006-3080.20180820002

不同分子量聚乙烯吡咯烷酮对多壁碳纳米管分散性能的影响

doi: 10.14135/j.cnki.1006-3080.20180820002
详细信息
    作者简介:

    尚旭:尚 旭(1993-),男,湖北襄阳人,硕士生,主要研究纳米材料表面修饰及应用。E-mail:risingshang@163.com

    通讯作者:

    公维光,E-mail:gongwg@ecust.edu.cn

  • 中图分类号: TM921.9

Influence of Polyvinylpyrrolidone with Different Molecular Weights on the Dispersion of Multiwalled Carbon Nanotubes

  • 摘要: 研究了不同分子量的聚乙烯吡咯烷酮(PVP)对多壁碳纳米管(MWCNTs)浆料流变性能、稳定性能的影响,并对PVP修饰的MWCNTs(P-MWCNTs)导电性进行了分析。结果表明,中等分子量的PVPK25和PVPK30对浆料的分散效果最佳,浆料黏度较低,呈现近牛顿流体特征,分散的MWCNTs颗粒均匀,平均粒径相对较小,并具有较好的稳定性,同时P-MWCNTs电阻率也较低。通过拉曼光谱(Raman)、热失重(TG)、扫描电子显微镜(SEM)对作用机理分析,结果表明,PVPK25和PVPK30与MWCNTs之间有更强的π-π共轭作用,吸附量高于低分子量PVPK17和高分子量PVPK90的吸附量,并在MWCNTs表面具有更好的空间位阻修饰效果,因而使得MWCNTs几乎呈单根分散,缠结现象显著减少。

     

  • 图  1  不同分子量PVP制备的MWCNTs浆料的黏度比较(a)和流变行为曲线(b)

    Figure  1.  Viscosity comparison (a) and rheological curves (b) of MWCNTs slurry modified by PVP with different molecular weights

    图  2  不同分子量PVP制备MWCNTs浆料的Herschel-Bulkley模型拟合图

    Figure  2.  Herschel-Bulkley model fitting of MWCNTs slurry modified by PVP with different molecular weights

    图  3  不同分子量PVP制备的MWCNTs浆料的粒径分布图

    Figure  3.  Particle size distribution of MWCNTs slurry modified by PVP with different molecular weights

    图  4  不同分子量PVP制备的MWCNTs浆料稳定性表征

    Figure  4.  Stability of MWCNTs slurry modified by PVP with different molecular weights

    图  5  MWCNTs和不同分子量PVP制备的P-MWCNTs的电阻率

    Figure  5.  Specific resistance of MWCNTs and P-MWCNTs modified by PVP with different molecular weights

    图  6  MWCNTs和不同分子量PVP修饰的P-MWCNTs的拉曼光谱

    Figure  6.  Raman spectra of MWCNTs and P-MWCNTs modified by PVP with different molecular weights

    图  7  MWCNTs、PVP和不同分子量PVP修饰的P-MWCNTs的TG曲线

    Figure  7.  TG curves of MWCNTs, PVP and P-MWCNTs modified by PVP with different molecular weights

    图  8  不同分子量PVP分散的MWCNTs的SEM图

    Figure  8.  SEM images of MWCNTs modified by PVP with different molecular weights

    表  1  不同分子量PVP制备MWCNTs浆料的Herschel-Bulkley模型拟合参数

    Table  1.   Herschel-Bulkley model fitting parameters of MWCNTs slurry modified by PVP with different molecular weights

    TypeR2τy/Pan
    PVPK171.0006.3430.387
    PVPK250.9990.2010.799
    PVPK301.0000.1980.840
    PVPK901.0001.2940.794
    下载: 导出CSV

    表  2  MWCNTs和不同分子量PVP修饰的P- MWCNTs的$\Delta \gamma_{\rm G} $$\Delta \gamma_{\rm 2D} $

    Table  2.   $\Delta \gamma_{\rm G} $ and $\Delta \gamma_{\rm 2D} $ of MWCNTs and P-MWCNTs modified by PVP with different molecular weights

    Sample$\Delta \gamma_{_{\rm G} }$/cm–1$\Delta \gamma_{_{\rm 2D}} $/cm–1
    K17-MWCNTs3.200.17
    K25-MWCNTs11.414.71
    K30-MWCNTs10.495.19
    K90-MWCNTs5.433.41
    下载: 导出CSV

    表  3  不同分子量PVP在MWCNTs上的吸附量

    Table  3.   Adsorption capacity of PVP with different molecular weights on MWCNTs

    SampleMass lose at 500 ℃/%Adsorption capacity/%
    K17-MWCNTs11.8513.44
    K25-MWCNTs19.7924.67
    K30-MWCNTs20.3225.50
    K90-MWCNTs15.5018.34
    下载: 导出CSV
  • [1] SHVARTZMANCOHEN R, LEVIKALISMAN Y, NATIVROTH E, et al. Generic approach for dispersing single-walled carbon nanotubes: The strength of a weak interaction[J]. Langmuir, 2004, 20(15): 6085-6088. doi: 10.1021/la049344j
    [2] COLEMAN J N, KHAN U, GUNKO Y K. Mechanical reinforcement of polymers using carbon nanotubes[J]. Advanced Materials, 2010, 18(6): 689-706.
    [3] WU F, HE X, ZENG Y, et al. Thermal transport enhancement of multi-walled carbon nanotubes/ high-density polyethylene composites[J]. Applied Physics A, 2006, 85(1): 25-28. doi: 10.1007/s00339-006-3649-2
    [4] LIU Y Q, GAO L, SUN J. Noncovalent functionalization of carbon nanotubes with sodium lignosulfonate and subsequent quantum dot decoration[J]. Journal of Physical Chemistry C, 2007, 111(3): 1223-1229.
    [5] 叶誉贤, 梁静静, 王海平, 等. 基于CH-π相互作用的多壁碳纳米管表面POSS粒子非共价修饰研究[J]. 高分子学报, 2015(4): 427-436.
    [6] 朱明晶, 彭娟, 唐萍, 等. 高稳定性和水溶性的共轭聚电解质/单壁碳纳米管复合物的制备和表征[J]. 化学学报, 2018, 76(6): 453-459.
    [7] OCONNELL M J, BACHILO S M, HUFFMAN C B, et al. Band gap fluorescence from individual single-walled carbon nanotubes[J]. Science, 2002, 297(5581): 593-596. doi: 10.1126/science.1072631
    [8] ISLAM M F, ROJAS E, BERGEY D M, et al. High weight-fraction surfactant solubilization of single-wall carbon nanotubes in water[J]. Nano Letters, 2003, 3: 269-273. doi: 10.1021/nl025924u
    [9] AUSMAN K D, OCONNELL M J, BOUL P, et al. Roping and wrapping carbon nanotubes[J]. AIP Conference Proceedings, 2001, 591: 226-230. doi: 10.1063/1.1426859
    [10] OCONNELL M J, BOUL P, ERICSON L M, et al. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping[J]. Chemical Physics Letters, 2001, 342(3): 265-271.
    [11] XIN X, XU G, ZHAN T T, et al. Dispersing carbon nanotubes in aqueous solutions by a starlike block copolymer[J]. Journal of Physical Chemistry C, 2008, 112(42): 16377-16384. doi: 10.1021/jp8059344
    [12] GRANITE M, RADULESCU A, COHEN Y. Small-angle neutron scattering from aqueous dispersions of single-walled carbon nanotubes with pluronic F127 and polyvinylpyrrolidone[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2012, 28(30): 11025-11031.
    [13] RASTOGI R, KAUSHAL R, TRIPATHI S K, et al. Comparative study of carbon nanotube dispersion using surfactants[J]. Journal of Colloid and Interface Science, 2008, 328(2): 421-428. doi: 10.1016/j.jcis.2008.09.015
    [14] LIN S, BLANKSCHTEIN D. Role of the bile salt surfactant sodium cholate in enhancing the aqueous dispersion stability of single-walled carbon nanotubes: A molecular dynamics simulation study[J]. Journal of Physical Chemistry B, 2010, 114(47): 15616-15625. doi: 10.1021/jp1076406
    [15] PLISKO T V, BILDYUKEVICH A V. Debundling of multiwalled carbon nanotubes in N, N -dimethylacetamide by polymers[J]. Colloid & Polymer Science, 2014, 292(10): 2571-2580.
    [16] HASAN T, SCARDACI V, TAN P H, et al. Stabilization and " debundling” of single-wall carbon nanotube dispersions in N-methyl-2-pyrrolidone (NMP) by polyvinylpyrrolidone (PVP)[J]. Journal of Physical Chemistry C, 2007, 111(34): 12594-12602. doi: 10.1021/jp0723012
    [17] HASAN T, SCARDACI V, TAN P H, et al. Dispersibility and stability improvement of unfunctionalized nanotubes in amide solvents by polymer wrapping[J]. Physica E: Low-dimensional Systems and Nanostructures, 2008, 40(7): 2414-2418. doi: 10.1016/j.physe.2007.09.161
    [18] JI Y, HUANG Y Y, TAJBAKHSH A R, et al. Polysiloxane surfactants for the dispersion of carbon nanotubes in nonpolar organic solvents[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2009, 25(20): 12325-12331.
    [19] 景希玮, 公维光, 冯中军, 等. 梳型聚合物超分散剂的合成及其在有机介质中分散CaCO3的研究[J]. 华东理工大学学报(自然科学版), 2017, 43(6): 777-783.
    [20] NTIM S A, SAE K O, WITZMANN F A, et al. Effects of polymer wrapping and covalent functionalization on the stability of MWCNT in aqueous dispersions[J]. Journal of Colloid & Interface Science, 2011, 355(2): 383-388.
    [21] STUDART A R, AMSTAD E, ANTONI M, et al. Rheology of concentrated suspensions containing weakly attractive alumina nanoparticles[J]. Journal of the American Ceramic Society, 2010, 89(8): 2418-2425.
    [22] LEE B, SCHLAUTMAN M. Effects of polymer molecular weight on adsorption and flocculation in aqueous kaolinite suspensions dosed with nonionic polyacrylamides[J]. Water, 2015, 7(11): 5896-5909. doi: 10.3390/w7115896
    [23] 张光华, 李元博, 朱军峰, 等. 不同分子量磺化丙酮-甲醛缩聚物在煤上的吸附及水煤浆流变性能[J]. 陕西科技大学学报, 2015, 33(1): 79-84. doi: 10.3969/j.issn.1000-5811.2015.01.017
    [24] MINAKOV A V, RUDYAK V Y, PRYAZHNIKOV M I. Rheological behavior of water and ethylene glycol based nanofluids containing oxide nanoparticles[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2018, 554: 279-285.
    [25] YANG Q H, HOU P X, BAI S, et al. Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes[J]. Chemical Physics Letters, 2001, 345(1): 18-24.
    [26] GAO Y, LI L Y, TAN P H, et al. Application of Raman spectroscopy in carbon nanotube-based polymer composites[J]. Science Bulletin, 2010, 55(35): 3978-3988. doi: 10.1007/s11434-010-4100-9
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  2888
  • HTML全文浏览量:  983
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-20
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回