高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

硅罗丹明荧光探针的研究进展

姚永康 唐俊马 杨琴 傅杨 彭以元 郭志前

姚永康, 唐俊马, 杨琴, 傅杨, 彭以元, 郭志前. 硅罗丹明荧光探针的研究进展[J]. 华东理工大学学报(自然科学版), 2019, 45(6): 845-852. doi: 10.14135/j.cnki.1006-3080.20180711001
引用本文: 姚永康, 唐俊马, 杨琴, 傅杨, 彭以元, 郭志前. 硅罗丹明荧光探针的研究进展[J]. 华东理工大学学报(自然科学版), 2019, 45(6): 845-852. doi: 10.14135/j.cnki.1006-3080.20180711001
YAO Yongkang, TANG Junma, YANG Qin, FU Yang, PENG Yiyuan, GUO Zhiqian. Progress on Si-Rhodamine Fluorescent Probes[J]. Journal of East China University of Science and Technology, 2019, 45(6): 845-852. doi: 10.14135/j.cnki.1006-3080.20180711001
Citation: YAO Yongkang, TANG Junma, YANG Qin, FU Yang, PENG Yiyuan, GUO Zhiqian. Progress on Si-Rhodamine Fluorescent Probes[J]. Journal of East China University of Science and Technology, 2019, 45(6): 845-852. doi: 10.14135/j.cnki.1006-3080.20180711001

硅罗丹明荧光探针的研究进展

doi: 10.14135/j.cnki.1006-3080.20180711001
详细信息
    作者简介:

    姚永康(1997-),男,硕士生,主要研究方向为有机合成及功能染料。E-mail:yaoyongkang@jxnu.edu.cn

    通讯作者:

    郭志前,E-mail:guozq@ecust.edu.cn

    彭以元,E-mail:yypeng@jxnu.edu.cn

  • 中图分类号: TQ533

Progress on Si-Rhodamine Fluorescent Probes

  • 摘要: 近年来,罗丹明染料因其良好的荧光性能,在化学和生物化学领域倍受关注。但罗丹明染料的荧光波长通常都小于600 nm,具有较强的生物背景荧光的干扰,很大程度上限制了其在生物成像等领域的实际应用。将罗丹明母核的氧原子替换为硅原子,所发展的硅罗丹明不仅具备传统罗丹明荧光染料的优点,还可将荧光波长红移至近红外波段,很好地解决了罗丹明荧光波长较短的问题。本文主要综述了硅罗丹明荧光探针的研究进展,重点聚焦该荧光团波长红移原理、荧光波长和荧光量子产率的调控,以及硅罗丹明探针的设计机理与应用。

     

  • 图  1  常见的荧光探针母体分子结构(按照结构和波长分类)

    Figure  1.  Common chromophores as fluorescent probes for chemoselective bioimaging (sorted by structure and emission color)

    图  2  罗丹明染料荧光性质的内在和外在影响因素

    Figure  2.  Intrinsic and extrinsic influence factors on rhodamine fluorescent properties

    图  3  Pyronine Y和TMDHS的光物理性质和能级轨道[610]

    Figure  3.  Photophysical properties and calculated orbital energy of pyronine Y and TMDHS[6, 10]

    图  4  硅罗丹明的化学结构和光物理性质[15-20]

    Figure  4.  Chemical structures and photophysical properties of SiR-NIRs[15-20]

    图  5  PET机理的前线轨道理论[23]

    Figure  5.  PET mechanism by front orbital theory[23]

    图  6  运用PET机理的硅罗丹明荧光探针结构及反应机理[924-25]

    Figure  6.  Structure and reaction mechanism of SiR-based fluorescent probes with PET mechanism[9, 24-25]

    图  7  硅罗丹明荧光探针螺环机理

    Figure  7.  SiR-based fluorescent probes with the spirocyclization mechanism

    图  8  基于硅罗丹明螺环反应的荧光探针机理[26-28]

    Figure  8.  SiR-based fluorescent probes mechanism with the spirocyclization[26-28]

    图  9  运用FRET机理的硅罗丹明荧光探针[30]

    Figure  9.  SiR-based fluorescent probe with FRET strategy[30]

    图  10  可逆检测GSH的硅罗丹明荧光探针[31]

    Figure  10.  SiR-based fluorescent probe for detecting GSH in reversible way[31]

    表  1  Pyronine Y和TMDHS光物理性质和能级的相关数据

    Table  1.   Relative data about photophysical properties and orbital energy of pyronine Y and TMDHS

    Materialsλabs/nmλem/nmEHOMO/eVELUMO/eV
    Pyronine Y522569−5.64−3.74
    TMDHS641659−5.50−3.92
    abs—Absorption; em—Emission
    下载: 导出CSV

    表  2  硅罗丹明光物理性质相关数据

    Table  2.   Relative data about photophysical properties of SiR-NIRs

    SiR-NIRsλabs/nmλem/nmφf1/eV
    SiR6005936130.38
    SiR6506466600.31
    SiR6806746890.35
    SiR7006917120.12
    SiR7207217400.05
    SiR6646466640.54
    φfl—Fluorescence quantum efficiency
    下载: 导出CSV
  • [1] ZHENG H, ZHAN X Q, BIAN Q N, et al. Advances in modifying fluorescein and rhodamine fluorophores as fluorescent chemosensors[J]. Chemical Communications, 2013, 49(5): 429-447. doi: 10.1039/C2CC35997A
    [2] ZHOU L, ZHANG X, WANG Q, et al. Molecular engineering of a TBET-based two-photon fluorescent probe for ratiometric imaging of living cells and tissues[J]. Journal of the American Chemical Society, 2014, 136(28): 9838-9841. doi: 10.1021/ja504015t
    [3] CHEN X, PRADHAN T, WANG F, et al. Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives[J]. Chemical Reviews, 2011, 112(3): 1910-1956.
    [4] GUPTA V K, MERGU N, KUMAWAT L K. A new multifunctional rhodamine-derived probe for colorimetric sensing of Cu(II) and Al(III) and fluorometric sensing of Fe(III) in aqueous media[J]. Sensors and Actuators: B. Chemical, 2016, 223: 101-113. doi: 10.1016/j.snb.2015.09.060
    [5] MAHATO P, SAHA S, SURESH E, et al. Ratiometric detection of Cr3+ and Hg2+ by a naphthalimide-rhodamine based fluorescent probe[J]. Inorganic Chemistry, 2012, 51(3): 1769-1777. doi: 10.1021/ic202073q
    [6] SUN Y Q, LIU J, LV X, et al. Rhodamine-inspired far-red to near-infrared dyes and their application as fluorescence probes[J]. Angewandte Chemie: Internation Edition, 2012, 51(31): 7634-7636. doi: 10.1002/anie.201202264
    [7] IKENO T, NAGANO T, HANAOKA K. Silicon-substituted xanthene dyes and their unique photophysical properties for fluorescent probes[J]. Chemistry: An Asian Journal, 2017, 12(13): 1435-1446. doi: 10.1002/asia.v12.13
    [8] KOIDE Y, KAWAGUCHI M, URANO Y, et al. A reversible near-infrared fluorescence probe for reactive oxygen species based on Te-rhodamine[J]. Chemical Communications, 2012, 48(25): 3091-3093. doi: 10.1039/c2cc18011a
    [9] KOIDE Y, URANO Y, HANAOKA K, et al. Evolution of group 14 rhodamines as platforms for near-infrared fluorescence probes utilizing photoinduced electron transfer[J]. ACS Chemical Biology, 2011, 6(6): 600-608. doi: 10.1021/cb1002416
    [10] KOIDE Y, URANO Y, HANAOKA K, et al. Development of an Si-rhodamine-based far-red to near-infrared fluorescence probe selective for hypochlorous acid and its applications for biological imaging[J]. Journal of the American Chemical Society, 2011, 133(15): 5680-5682. doi: 10.1021/ja111470n
    [11] KUSHIDA Y, NAGANO T, HANAOKA K. Silicon-substituted xanthene dyes and their applications in bioimaging[J]. Analyst, 2015, 140(3): 685-695. doi: 10.1039/C4AN01172D
    [12] LIU J, SUN YQ, ZHANG H, et al. Sulfone-Rhodamines: A new class of near-infrared fluorescent dyes for bioimaging[J]. ACS Applied Materials and Interfaces, 2016, 8(35): 22953-22962. doi: 10.1021/acsami.6b08338
    [13] BEST Q A, SATTENAPALLY N, DYER D J, et al. pH-dependent Si-fluorescein hypochlorous acid fluorescent probe: Spirocycle ring-opening and excess hypochlorous acid-induced chlorination[J]. Journal of the American Chemical Society, 2013, 135(36): 13365-13370. doi: 10.1021/ja401426s
    [14] EGAWA T, HANAOKA K, KOIDE Y, et al. Development of a far-red to near-infrared fluorescence probe for calcium ion and its application to multicolor neuronal imaging[J]. Journal of the American Chemical Society, 2011, 133(36): 14157-14159. doi: 10.1021/ja205809h
    [15] KOIDE Y, URANO Y, HANAOKA K, et al. Development of NIR fluorescent dyes based on Si-rhodamine for in vivo imaging[J]. Journal of the American Chemical Society, 2012, 134(11): 5029-5031. doi: 10.1021/ja210375e
    [16] WANG T, ZHAO Q J, HU H G, et al. Spirolactonized Si-rhodamine: A novel NIR fluorophore utilized as a platform to construct Si-rhodamine-based probes[J]. Chemical Communications, 2012, 48(70): 8781-8783. doi: 10.1039/c2cc34159j
    [17] KUSHIDA Y, HANAOKA K, KOMATSU T, et al. Red fluorescent scaffold for highly sensitive protease activity probes[J]. Bioorganic and Medicinal Chemistry Letters, 2012, 22(12): 3908-3911. doi: 10.1016/j.bmcl.2012.04.114
    [18] LUKINAVICIUS G, REYMOND L, UMEZAWA K, et al. Fluorogenic probes for multicolor imaging in living cells[J]. Journal of the American Chemical Society, 2016, 138(30): 9365-9368. doi: 10.1021/jacs.6b04782
    [19] GRIMM J B, ENGLISH B P, CHEN J, et al. A general method to improve fluorophores for live-cell and single-molecule microscopy[J]. Nature Methods, 2015, 12(3): 244-250. doi: 10.1038/nmeth.3256
    [20] GRIMM J B, MUTHUSAMY A K, LIANG Y, et al. A general method to fine-tune fluorophores for live-cell and in vivo imaging[J]. Nature Methods, 2017, 14(10): 987-994. doi: 10.1038/nmeth.4403
    [21] GRIMM J B, BROWN T A, TKACHUK A N, et al. General synthetic method for Si-fluoresceins and Si-rhodamines[J]. ACS Central Science, 2017, 3(9): 975-985. doi: 10.1021/acscentsci.7b00247
    [22] SHEN S, YU J, LU Y, et al. Near-infrared probes based on fluorinated Si-rhodamine for live cell imaging[J]. RSC Advances, 2017, 7(18): 10922-10927. doi: 10.1039/C6RA28455H
    [23] LEMMETYINEN H, NIKOLAI V T, ALEXANDER E, et al. Photoinduced intra- and intermolecular electron transfer in solutions and in solid organized molecular assemblies[J]. Physical Chemistry Chemical Physics, 2011, 13(2): 397-412.
    [24] TANG J, GUO Z, ZHANG Y, et al. Rational design of a fast and selective near-infrared fluorescent probe for targeted monitoring of endogenous nitric oxide[J]. Chemical Communications, 2017, 53(76): 10520-10523. doi: 10.1039/C7CC05971J
    [25] ZHANG H, LIU J, LIU C, et al. Imaging lysosomal highly reactive oxygen species and lighting up cancer cells and tumors enabled by a Si-rhodamine-based near-infrared fluorescent probe[J]. Biomaterials, 2017, 133: 60-69. doi: 10.1016/j.biomaterials.2017.04.023
    [26] ZHU W, CHAI X, WANG B, et al. Spiroboronate Si-rhodamine as a near-infrared probe for imaging lysosomes based on the reversible ring-opening process[J]. Chemical Communications, 2015, 51(47): 9608-9611. doi: 10.1039/C5CC02496J
    [27] BREWER T F, CHANG C J. An aza-cope reactivity-based fluorescent probe for imaging formaldehyde in living cells[J]. Journal of the American Chemical Society, 2015, 137(34): 10886-10889. doi: 10.1021/jacs.5b05340
    [28] WANG B, CUI X, ZHANG Z, et al. A six-membered-ring incorporated Si-rhodamine for imaging of copper (II) in lysosomes[J]. Organic and Biomolecular Chemistry, 2016, 14(28): 6720-6728. doi: 10.1039/C6OB00894A
    [29] DING Z, TAN J, FENG G, et al. Nanoscale metal-organic frameworks coated with poly (vinyl alcohol) for ratiometric peroxynitrite sensing through FRET[J]. Chemical Science, 2017, 8(7): 5101-5106. doi: 10.1039/C7SC01077J
    [30] MYOCHIN T, HANAOKA K, IWAKI S, et al. Development of a series of near-infrared dark quenchers based on Si-rhodamines and their application to fluorescent probes[J]. Journal of the American Chemical Society, 2015, 137(14): 4759-4765. doi: 10.1021/jacs.5b00246
    [31] UMEZAWA K, YOSHIDA M, KAMIYA M, et al. Rational design of reversible fluorescent probes for live-cell imaging and quantification of fast glutathione dynamics[J]. Nature Chemistry, 2017, 9(3): 279-286. doi: 10.1038/nchem.2648
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  8344
  • HTML全文浏览量:  3319
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-15
  • 网络出版日期:  2019-07-18
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回