高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ
引用本文:
Citation:

伯胺对烯二炔化合物的Michael加成反应

    通讯作者: 胡爱国, hagmhsn@ecust.edu.cn
  • 基金项目: 国家自然科学基金(21474027)

Michael Addition of Primary Amine to Enediyne Compounds

    Corresponding author: HU Ai-guo, hagmhsn@ecust.edu.cn
  • 摘要: 烯二炔类小分子可在常温下发生Bergman环化反应而产生双自由基中间体,并表现出强烈的细胞毒性,成为抗肿瘤抗生素的重要选择。选取一种含有长链烷基的烯二炔作为模型化合物,研究了含有马来酰亚胺基团的烯二炔小分子的Michael加成反应。结果表明,在极性溶剂中,伯胺选择进攻烯二炔的叁键部分形成了无Bergman反应活性的1,6-单加成产物,而在低极性溶剂中或者伯胺上有大体积取代基的情况下,Michael加成反应被极大地抑制。水相体系中的实验证明,中性有利于促进Michael加成反应,在弱酸性条件下,烯二炔不被伯胺进攻,保留了Bergman环化反应活性。研究结果将有助于指导烯二炔类抗生素的分子设计并构建具有临床应用价值的载药系统。
  • [1] ISHIDA N, Miyazaki K, KUMAGAI K, et al. Neocarzinostatin, an antitumor antibiotic of high molecular weight, isolation, physiochemical properties and biological activities[J]. Journal of Antibiotics, 1965, 18(2):68-76.
    [2] EDO K, MIZUGAKI M, KOIDE Y, et al. The structure of neocarzinostatin chromophore possessing a novel bicyclo-[7,3,0] dodecadiyne system[J]. Tetrahedron Letters, 1985, 26(3):331-334.
    [3] OTANI T, YOSHIDA K, SASAKI T, et al. C-1027 enediyne chromophore:Presence of another active form and its chemical structure[J]. Journal of Antibiotics, 1999, 52(4):415-421.
    [4] REN F, HOGAN P C, ANDERSON A J, et al. Kedarcidin chromophore——Synthesis of its proposed structure and evidence for a stereochemical revision[J]. Journal of the American Chemical Society, 2007, 129(17):5381-5383.
    [5] KOMANO K, SHIMAMURA S, NORIZUKI Y, et al. Total synthesis and structure revision of the (-)-maduropeptin chromophore[J]. Journal of the American Chemical Society, 2009, 131(34):12072-12074.
    [6] LEE M D, DUNNE T S, CHANG C C, et al. Calichemicins, a novel family of antitumor antibiotics:2. Chemistry and structure of calichemicin γ1[J]. Journal of the American Chemical Society, 1987, 109(11):3466-3468.
    [7] MYERS A G, FRALEY M E, TOM N J, et al. Synthesis of(+)-dynemicin A and analogs of wide structural variability:Establishment of the absolute configuration of natural dynemicin A[J]. Chemistry & Biology, 1995, 2(1):33-43.
    [8] GOLIK J, DUBAY G, GROENEWOLD G, et al. Esperamicins, a novel class of potent antitumor antibiotics:3. Structures of esperamicins A1, A2, and A1b[J]. Journal of the American Chemical Society,1987, 109(11):3462-3464.
    [9] DAVIES J, WANG H, TAYLOR T, et al. Uncialamycin, a new enediyne antibiotic[J]. Organic Letters,2005, 7(23):5233-5236.
    [10] SHEN B, HINDRA, YAN X H, et al. Enediynes:Exploration of microbial genomics to discover new anticancer drug leads[J]. Bioorganic & Medicinal Chemistry Letters, 2015, 25(1):9-15.
    [11] BECK A, HAEUW J F, WURCH T, et al. The next generation of antibody-drug conjugates comes of age[J]. Discovery Medicine, 2010, 10(53):329-339.
    [12] SIEVERS E L, LARSON R A, STADTMAUER E A, et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse[J]. Journal of Clinical Oncology,2001, 19(13):3244-3254.
    [13] KANTARJIAN H, THOMAS D, JORGENSEN J, et al. Inotuzumab ozogamicin, an anti-CD22-calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia:A phase 2 study[J]. The Lancet Oncology, 2012, 13(4):403-411.
    [14] NICOLAOU K C, WANG Y, LU M, et al. Streamlined total synthesis of uncialamycin and its application to the synthesis of designed analogues for biological investigations[J]. Journal of the American Chemical Society, 2016, 138(26):8235-8246.
    [15] SUN S, ZHU C, SONG D, et al. Preparation of conjugated polyphenylenes from maleimide-based enediynes through thermal-triggered Bergman cyclization polymerization[J]. Polymer Chemistry, 2014, 5(4):1241-1247.
    [16] 李巧萍,陈淑丹,赵鹏,等.基于马来酰亚胺的超支化聚烯二炔的合成[J].功能高分子学报,2017, 30(4):422-428.
    [17] SONG D, SUN S, TIAN Y, et al. Maleimide-based acyclic enediyne for efficient DNA-cleavage and tumor cell suppression[J]. Journal of Materials Chemistry B, 2015, 3(16):3195-3200.
    [18] DHAR S, LIPPARD S J, MITAPLATIN, et al. A potent fusion of cisplatin and the orphan drug dichloroacetate[J]. Proceedings of the National Academy of Sciences of the United States of America,2009, 106(52):22199-22204.
    [19] HE H Y, ZHAO J N, JIA R, et al. Novel pyrazolo[3,4-d]pyrimidine derivatives as potential antitumor agents:Exploratory synthesis, preliminary structure-activity relationships, and in vitro biological evaluation[J]. Molecules, 2011, 16(12):10685-10694.
    [20] BAKER J R, WOOLFSON D N, MUSKETT F W, et al. Protein-small molecule interactions in neocarzinostatin, the prototypical enediyne chromoprotein antibiotic[J]. ChemBioChem, 2007, 8(7):704-717.
    [21] 黄帅, 李竞, 李保君, 等. 一种新型开环烯二炔的设计、合成及细胞毒性研究[J]. 华东理工大学学报(自然科学版),2017, 43(1):1-7.
    [22] BOROS M, KÖKÖSI J, VÁMOS J, et al. Methods for syntheses of N-methyl-DL-aspartic acid derivatives[J]. Amino Acids, 2007, 33(4):709-717.
    [23] BOWLER J T, CLAUSEN C R, BLACKBURN D J, et al. Convenient synthesis of N1-substituted orotic acid derivatives[J]. Tetrahedron Letters, 2014, 55(47):6465-6466.
    [24] THISTLETHWAITE A J, LEEPER D B, NERLINGER R E. pH Distribution in human tumors[J]. International Journal of Radiation Oncology Biology Physics, 1985, 11(9):1647-1652.
  • 加载中
图(1)
计量
  • 文章访问数:  1009
  • HTML全文浏览量:  243
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-21
  • 刊出日期:  2018-11-02

伯胺对烯二炔化合物的Michael加成反应

    通讯作者: 胡爱国, hagmhsn@ecust.edu.cn
  • 1. 华东理工大学材料科学与工程学院, 上海市先进聚合物材料重点实验室, 上海 200237
基金项目:  国家自然科学基金(21474027)

摘要: 烯二炔类小分子可在常温下发生Bergman环化反应而产生双自由基中间体,并表现出强烈的细胞毒性,成为抗肿瘤抗生素的重要选择。选取一种含有长链烷基的烯二炔作为模型化合物,研究了含有马来酰亚胺基团的烯二炔小分子的Michael加成反应。结果表明,在极性溶剂中,伯胺选择进攻烯二炔的叁键部分形成了无Bergman反应活性的1,6-单加成产物,而在低极性溶剂中或者伯胺上有大体积取代基的情况下,Michael加成反应被极大地抑制。水相体系中的实验证明,中性有利于促进Michael加成反应,在弱酸性条件下,烯二炔不被伯胺进攻,保留了Bergman环化反应活性。研究结果将有助于指导烯二炔类抗生素的分子设计并构建具有临床应用价值的载药系统。

English Abstract

(1)  参考文献 (24)

目录

    /

    返回文章