高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

基于二次插值教学优化的化工动态参数估计方法

陈旭 徐斌 梅从立 丁煜函 杜文莉

陈旭, 徐斌, 梅从立, 丁煜函, 杜文莉. 基于二次插值教学优化的化工动态参数估计方法[J]. 华东理工大学学报(自然科学版), 2017, (6): 824-828. doi: 10.14135/j.cnki.1006-3080.2017.06.011
引用本文: 陈旭, 徐斌, 梅从立, 丁煜函, 杜文莉. 基于二次插值教学优化的化工动态参数估计方法[J]. 华东理工大学学报(自然科学版), 2017, (6): 824-828. doi: 10.14135/j.cnki.1006-3080.2017.06.011
CHEN Xu, XU Bin, MEI Cong-li, DING Yu-han, DU Wen-li. Chemical Dynamic Parameter Estimation by an Improved TLBO with Quadratic Interpolation[J]. Journal of East China University of Science and Technology, 2017, (6): 824-828. doi: 10.14135/j.cnki.1006-3080.2017.06.011
Citation: CHEN Xu, XU Bin, MEI Cong-li, DING Yu-han, DU Wen-li. Chemical Dynamic Parameter Estimation by an Improved TLBO with Quadratic Interpolation[J]. Journal of East China University of Science and Technology, 2017, (6): 824-828. doi: 10.14135/j.cnki.1006-3080.2017.06.011

基于二次插值教学优化的化工动态参数估计方法

doi: 10.14135/j.cnki.1006-3080.2017.06.011
基金项目: 

江苏省自然科学基金(BK20160540,BK20130531);中国博士后科学基金(2016M591783);江苏大学人才启动基金(15JDG139);中央高校基本科研业务费重点科研基地创新基金(222201717006)

Chemical Dynamic Parameter Estimation by an Improved TLBO with Quadratic Interpolation

  • 摘要: 动态参数估计问题的有效求解对于化工过程精确建模具有重要意义。针对动态参数估计问题,通过将二次插值算子引入到教学优化(TLBO)算法来加强其局部搜索能力,提出了二次插值教学优化(TLBO-QI)算法。此外,将TLBO-QI用于3个化工过程动态参数估计问题的求解,并与TLBO、蜂群优化以及粒子群优化进行了对比,计算结果表明了TLBO-QI可以获取精度更好的解。

     

  • [1] 何鹏飞,李绍军.融合copula EDA的AEA算法及其在参数估计中的应用[J].高校化学工程学报,2015,29(1):177-84.
    [2] DAI K,WANG N.A hybrid DNA based genetic algorithm for parameter estimation of dynamic systems[J].Chemical Engineering Research and Design,2012,90(12):2235-2246.
    [3] SUN J,PALADE V,CAI Y,et al.Biochemical systems identification by a random drift particle swarm optimization approach[J].BMC Bioinformatics,2014,15(6):1-17.
    [4] 龙文,张文专.基于自适应粒子群算法的重油热解模型参数估计[J].重庆师范大学学报(自然科学版),2013,30(6):128-133.
    [5] 徐斌,陶莉莉,程武山.一种自适应多策略差分进化算法及其应用[J].化工学报,2016,67(12):5190-5198.
    [6] RAKHSHANI H,DEHGHANIAN E,RAHATI A.Hierarchy cuckoo search algorithm for parameter estimation in biological systems[J].Chemometrics and Intelligent Laboratory Systems,2016,159:97-107.
    [7] PENGFEI H.融合差分进化算法的AEA算法及其在参数估计中的应用[J].化工学报,2014,65(12):4857-4865.
    [8] PENAS D R,GONZÁLEZ P,EGEA J A,et al.Parameter estimation in large-scale systems biology models:A parallel and self-adaptive cooperative strategy[J].BMC Bioinformatics,2017,18(1):52.
    [9] RAO R V,SAVSANI V J,VAKHARIA D.Teaching-learning-based optimization:A novel method for constrained mechanical design optimization problems[J].Computer-Aided Design,2011,43(3):303-315.
    [10] YANG Y,ZONG X,YAO D,et al.Improved alopex-based evolutionary algorithm (AEA) by quadratic interpolation and its application to kinetic parameter estimations[J].Applied Soft Computing,2017,51:23-38.
    [11] FLOUDAS C A,PARDALOS P M,ADJIMAN C,et al.Handbook of Test Problems in Local and Global Optimization[M].[s.l.]:Kluwer Academic Publishers,1999.
    [12] RAO R,SAVSANI V,VAKHARIA D.Teaching-learning-based optimization:An optimization method for continuous non-linear large scale problems[J].Information Sciences,2012,183(1):1-15.
    [13] 武建娜,崔志华,刘静.基于二次插值法的社会情感优化算法[J].计算机应用,2011,31(9):2522-2525.
    [14] KARABOGA D,BASTURK B.A powerful and efficient algorithm for numerical function optimization:Artificial bee colony (ABC) algorithm[J].Journal of Global Optimization,2007,39(3):459-471.
    [15] SHI Y,EBERHART R.A modified particle swarm optimizer:Proceedings of the evolutionary computation proceedings[C]//1998 IEEE World Congress on Computational Intelligence.IEEE,1998.
    [16] TJOA I B,BIEGLER L T.Simultaneous solution and optimization strategies for parameter estimation of differential-algebraic equation systems[J].Industrial & Engineering Chemistry Research,1991,30(2):376-385.
  • 加载中
图(1)
计量
  • 文章访问数:  1617
  • HTML全文浏览量:  219
  • PDF下载量:  273
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-30
  • 刊出日期:  2017-12-28

目录

    /

    返回文章
    返回