高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

负载型催化剂Au(Pd)@UIO-66的制备及其催化性能

李岩松 罗惜阔 许海涛 许振良

李岩松, 罗惜阔, 许海涛, 许振良. 负载型催化剂Au(Pd)@UIO-66的制备及其催化性能[J]. 华东理工大学学报(自然科学版), 2017, (6): 749-755. doi: 10.14135/j.cnki.1006-3080.2017.06.001
引用本文: 李岩松, 罗惜阔, 许海涛, 许振良. 负载型催化剂Au(Pd)@UIO-66的制备及其催化性能[J]. 华东理工大学学报(自然科学版), 2017, (6): 749-755. doi: 10.14135/j.cnki.1006-3080.2017.06.001
LI Yan-song, LUO Xi-kuo, XU Hai-tao, XU Zhen-liang. Preparation and Catalytic Performance of Supported Catalysts Au(Pd)@UIO-66[J]. Journal of East China University of Science and Technology, 2017, (6): 749-755. doi: 10.14135/j.cnki.1006-3080.2017.06.001
Citation: LI Yan-song, LUO Xi-kuo, XU Hai-tao, XU Zhen-liang. Preparation and Catalytic Performance of Supported Catalysts Au(Pd)@UIO-66[J]. Journal of East China University of Science and Technology, 2017, (6): 749-755. doi: 10.14135/j.cnki.1006-3080.2017.06.001

负载型催化剂Au(Pd)@UIO-66的制备及其催化性能

doi: 10.14135/j.cnki.1006-3080.2017.06.001
基金项目: 

国家自然科学基金(21371058)

Preparation and Catalytic Performance of Supported Catalysts Au(Pd)@UIO-66

  • 摘要: 以多孔金属有机骨架UIO-66为基材,采用浸渍还原法分别合成了Au@UIO-66和Pd@UIO-66两种负载型催化剂,通过透射电镜(TEM)、X射线衍射(XRD)、红外光谱(IR)、N2物理吸脱附对所制备催化剂进行了表征。结果表明:尺寸为13 nm的金纳米粒子(AuNPs)均匀分散在载体上,钯纳米(PdNPs)呈现出纳米粒子(粒径5~8 nm)和纳米线两种状态,且分散均匀。研究了两种催化剂在不同条件下催化还原对硝基苯酚的性能,结果表明:Au@UIO-66和Pd@UIO-66这两种催化剂都具有较高的催化活性,各使用10 mg催化100 mL、1.6×10-4 mol/L的对硝基苯酚溶液,5 min内对硝基苯酚都可达到95%以上的转化率。

     

  • [1] WANG C,ZHANG H,FENG C,et al.Multifunctional Pd@MOF core-shell nanocomposite as highly active catalyst for p-nitrophenol reduction[J].Catalysis Communications,2015,72:29-32.
    [2] LAI B,ZHANG Y H,LI R,et al.Influence of operating temperature on the reduction of high concentration p-nitrophenol (PNP) by zero valent iron (ZVI)[J].Chemical Engineering Journal,2014,249:143-152.
    [3] WU X Q,WEN G X,WU Y P,et al.A novel 3D Ag(I)-MOF:Surfactant-directed syntheses and catalytic degradation of o/m/p-nitrophenol[J].Journal of Solid State Chemistry,2016,242:243-247.
    [4] KUMAR R S,KUMAR S S,KULANDAINATHAN M A.Efficient electrosynthesis of highly active Cu3 (BTC)2-MOF and its catalytic application to chemical reduction[J].Microporous & Mesoporous Materials,2013,168:57-64.
    [5] NIU H,LIU S,CAI Y,et al.MOF derived porous carbon supported Cu/Cu2O composite as high performance non-noble catalyst[J].Microporous & Mesoporous Materials,2016,219:48-53.
    [6] WU R,QIAN X,ZHOU K,et al.Highly dispersed Au nanoparticles immobilized on Zr-based metal-organic frameworks as heterostructured catalyst for CO oxidation[J].Journal of Materials Chemistry A,2013,1(45):14294-14299.
    [7] HINDE C S,WEBB W R,CHEW B K,et al.Utilisation of gold nanoparticles on amine-functionalised UiO-66(NH2-UiO-66) nanocrystals for selective tandem catalytic reactions[J].Chemical Communications,2016,52(39):6557-6560.
    [8] MURDOCH M,WATERHOUSE G I,NADEEM M A,et al.The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles[J].Nature Chemistry,2011,3(6):489-492.
    [9] BI Q Y,LIN J D,LIU Y M,et al.Promoted hydrogen generation from formic acid with amines using Au/ZrO2 catalyst[J].International Journal of Hydrogen Energy,2016,41(46):21193-21202.
    [10] WOO H,PARK J,JI C P,et al.Facile synthesis of hybrid Cu2O/Pd-Fe3O4 nanocatalysts for C-H arylation of 4-nitroimidazoles[J].Rsc Advances,2016,6(42):36211-36217.
    [11] RAJSKA M,DŁUGOSZ P,ZYBAŁA R.Effect of support structure in Au/Al2O3-TiO2 catalysts in low-temperature CO oxidation[C]//E3S Web of Conferences.[s.l.]:EDP Sciences,2016:00131.
    [12] LIU X,XIAO Z,HUANG A,et al.Synthesis,structures,and fluorescent properties of three cobalt-based coordination polymers with a rigid tripodal carboxylate ligand[J].Zeitschrift Für Anorganische Und Allgemeine Chemie,2016,642(1):31-35.
    [13] MÜHLBAUER E,KLINKEBIEL A,BEYER O,et al.Functionalized PCN-6 metal-organic frameworks[J].Microporous & Mesoporous Materials,2015,216:51-55.
    [14] WANG B,LV X L,FENG D,et al.Highly stable Zr(IV)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water[J].Journal of the American Chemical Society,2016,138(19):6204-6216.
    [15] LEUS K,CONCEPCOON P,VANDICHEL M,et al.Au@UiO-66:A base free oxidation catalyst[J].Rsc Advances,2015,5(29):22334-22342.
    [16] WU R,QIAN X,ZHOU K,et al.Highly dispersed Au nanoparticles immobilized on Zr-based metal-organic frameworks as heterostructured catalyst for CO oxidation[J].Journal of Materials Chemistry A,2013,1(45):14294-14299.
    [17] SCHAATE A,ROY P,GODT A,et al.Modulated synthesis of Zr-based metal-organic frameworks:From nano to single crystals[J].Chemistry (Weinheim an der Bergstrasse,Germany),2011,17(24):6643-6651.
    [18] KATZ M J,BROWN Z J,COLON Y J,et al.A facile synthesis of UiO-66,UiO-67 and their derivatives[J].Chemical Communications,2013,49(82):9449-9451.
    [19] HE Y F,FENG J T,DU Y Y,et al.Controllable synthesis and acetylene hydrogenation performance of supported Pd nanowire and cuboctahedron catalysts[J].Acs Catalysis,2012,2(2):1703-1710.
  • 加载中
图(1)
计量
  • 文章访问数:  2347
  • HTML全文浏览量:  279
  • PDF下载量:  469
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-17
  • 刊出日期:  2017-12-28

目录

    /

    返回文章
    返回