高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ
基于空间学习和情感追踪的多模多目标群搜索算法
丁亚丹, 冯翔, 虞慧群
doi: 10.14135/j.cnki.1006-3080.20201022003
为了解决多模态多目标优化问题,寻找与帕累托最优解等效的所有解,通过在基本的群搜索算法中引入社会行为,提出了一种新颖的基于空间学习机制和情感追踪行为的社会群搜索优化算法(MMO_LTSGSO)。首先,建立空间学习机制,根据学习到的个体自身位置与最佳个体位置的实时信息,对种群分布状态(离散态、聚合态)进行决策。当种群处于离散态时,采用追随和游走的方式增强算法空间探索能力;随着优化过程的进行,个体彼此影响交互,空间距离逐渐减小,此时种群逐渐聚合,采用动态步长的搜索策略更新个体位置,能实时勘探最优解周围的解,加快算法收敛速度。其次,引入了情感因子,使一定的个体沿其偏好方向进行情感追踪移动行为,防止算法陷入停滞状态,提高算法求解精度;采用特殊的拥挤距离计算方式和引导进化策略保证算法在决策空间和目标空间的双重多样性。最后,从理论上证明了该算法的收敛性;使用15个多模态多目标优化测试基准函数验证算法的性能,并将其与现有的几个多模多目标优化算法进行性能对比,实验结果验证了本文算法能够有效求解多模多目标优化问题。
关键词: 空间学习, 情感追踪, 群搜索算法, 情感因子, 多模多目标优化