高级检索

    陈筱, 于海宁, 郑楠, 许传鹏, 姜广宇, 李永生. 新型聚丙烯腈包覆硒化钴/碳复合材料的制备及其在锂离子电池中的应用[J]. 华东理工大学学报(自然科学版), 2020, 46(3): 341-348. DOI: 10.14135/j.cnki.1006-3080.20190307001
    引用本文: 陈筱, 于海宁, 郑楠, 许传鹏, 姜广宇, 李永生. 新型聚丙烯腈包覆硒化钴/碳复合材料的制备及其在锂离子电池中的应用[J]. 华东理工大学学报(自然科学版), 2020, 46(3): 341-348. DOI: 10.14135/j.cnki.1006-3080.20190307001
    CHEN Xiao, YU Haining, ZHENG Nan, XU Chuanpeng, JIANG Guangyu, LI Yongsheng. Synthesis of a Novel Cobalt Selenide/Carbon Composites with Polyacrylonitrile Coating and Application in Li-Ion Battery[J]. Journal of East China University of Science and Technology, 2020, 46(3): 341-348. DOI: 10.14135/j.cnki.1006-3080.20190307001
    Citation: CHEN Xiao, YU Haining, ZHENG Nan, XU Chuanpeng, JIANG Guangyu, LI Yongsheng. Synthesis of a Novel Cobalt Selenide/Carbon Composites with Polyacrylonitrile Coating and Application in Li-Ion Battery[J]. Journal of East China University of Science and Technology, 2020, 46(3): 341-348. DOI: 10.14135/j.cnki.1006-3080.20190307001

    新型聚丙烯腈包覆硒化钴/碳复合材料的制备及其在锂离子电池中的应用

    Synthesis of a Novel Cobalt Selenide/Carbon Composites with Polyacrylonitrile Coating and Application in Li-Ion Battery

    • 摘要: 硒化钴因具有良好的脱嵌锂能力而被认为是理想的锂离子电池负极材料,但由于充放电过程中体积膨胀严重和导电性较差,限制了其电池性能。以钴基沸石咪唑骨架(ZIF)材料ZIF-67为前驱体,经过碳化和硒化处理得到硒化钴-碳复合物(CoSe2-C),再经过聚丙烯腈(PAN)包覆和热处理得到环化聚丙烯腈(c-PAN)包覆的硒化钴/碳复合材料(CoSe2-C/c-PAN)。该复合材料作为锂离子电池负极材料表现出了优异的比容量和循环稳定性,0.2 A/g条件下首次放电比容量达到1 440 mA·h/g,1.0 A/g条件下经过200次循环依然表现出高可逆比容量(653 mA·h/g)。这主要归因于环化聚丙烯腈链中的π键对材料中电子电导率和离子传输速率的提升效果,以及柔性高分子链的包覆有效缓解了材料充放电过程中的体积膨胀。

       

      Abstract: Cobalt selenide is an ideal anode material for lithium-ion batteries because of its good lithium-ion insertion or extraction capability. However, the battery performance of cobalt selenide is limited by the large volumetric expansion upon cycling and its insulating nature. In this study, we produced CoSe2-C/c-PAN by coating CoSe2-C polyhedrons with polyacrylonitrile (PAN) in N2 atmosphere. The CoSe2-C polyhedrons were successfully synthesized using Co-based zeolitic imidazolate framework (ZIF-67) as precursor through a two-step method, which includes carbonization of ZIF-67 and a subsequent selenization. The resultant CoSe2-C/c-PAN showed high specific capacity and excellent cycling stability with an initial discharge capacity of 1 440 mA·h/g at 0.2 A/g and a reversible capacity of 653 mA·h/g at 1.0 A/g after 200 cycles as anode material of Li-ion battery. The excellent battery performance of CoSe2-C/c-PAN could be attributed to the synergistic effect of nanostructured CoSe2 and carbon materials, in which the nanostructured CoSe2 possesses high reactivity towards lithium-ions and the carbon can provide a continuous conductive matrix to facilitate the charge transfer and an effective buffering to mitigate the structural variation of CoSe2 during cycling. The significantly enhanced electrochemical performance of the composite could be ascribed to the improved electrical conductivity and structural stability of c-PAN.

       

    /

    返回文章
    返回