高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

Fe2O3修饰CaSO4/Ben载氧体化学链燃烧反应特性

穆丽颖 肖慧霞 张志丰 蔡志阳 王亦飞 于广锁

穆丽颖, 肖慧霞, 张志丰, 蔡志阳, 王亦飞, 于广锁. Fe2O3修饰CaSO4/Ben载氧体化学链燃烧反应特性[J]. 华东理工大学学报(自然科学版).
引用本文: 穆丽颖, 肖慧霞, 张志丰, 蔡志阳, 王亦飞, 于广锁. Fe2O3修饰CaSO4/Ben载氧体化学链燃烧反应特性[J]. 华东理工大学学报(自然科学版).
MU Liying, XIAO Huixia, ZHANG Zhifeng, CAI Zhiyang, WANG Yifei, YU Guangsuo. Reaction Performance of CaSO4/Ben Oxygen Carrier Modified by Fe2O3 in Chemical Looping Combustion[J]. Journal of East China University of Science and Technology.
Citation: MU Liying, XIAO Huixia, ZHANG Zhifeng, CAI Zhiyang, WANG Yifei, YU Guangsuo. Reaction Performance of CaSO4/Ben Oxygen Carrier Modified by Fe2O3 in Chemical Looping Combustion[J]. Journal of East China University of Science and Technology.

Fe2O3修饰CaSO4/Ben载氧体化学链燃烧反应特性

基金项目: 国家重点发计划(2017YFB0602802)
详细信息
    作者简介:

    穆丽颖(1995-),女,江苏南通人,硕士生,主要研究方向钙基载氧体化学链燃烧

    通讯作者:

    王亦飞,E-mail:wangyf@ecust.edu.cn

  • 中图分类号: TQ038.4

Reaction Performance of CaSO4/Ben Oxygen Carrier Modified by Fe2O3 in Chemical Looping Combustion

  • 摘要: 利用间歇式流化床反应器和热重分析仪分别进行多次循环实验及反应性能测试,研究了Fe2O3在化学链燃烧过程中对CaSO4/Ben载氧体的催化作用,通过对比不同Fe2O3含量载氧体与CO的反应活化能进行验证。实验结果表明,Fe2O3的添加使CaSO4/Ben载氧体的比表面积和孔容增加,提高其还原反应速率,并维持系统内较高的CO2浓度;Fe2O3可抑制CaSO4反应生成CaO和含硫气体,提高CaSO4/Ben载氧体循环反应的稳定性,w=15%的Fe2O3负载量为最佳选择;添加w=15%Fe2O3可使CaSO4/Ben载氧体与CO反应活化能由88.72 kJ/mol降至43.08 kJ/mol,反应活性显著提高。

     

  • 图  1  间歇式流化床化学链燃烧系统

    Figure  1.  Chemical looping combustion system of batch fluidized bed

    图  2  Fe2O3负载量对CO平均转化率的影响

    Figure  2.  Effect of Fe2O3 content on CO average conversion

    图  3  反应器出口气体浓度与反应时间的关系曲线

    Figure  3.  Variation of outlet gas concentration with reaction time

    图  4  载氧体化学链燃烧反应物及产物浓度曲线

    Figure  4.  Concentration curves of reactants and products in CLC of OCs

    图  5  CO平均转化率随循环次数的变化

    Figure  5.  CO average conversion rate varies with the number of cycles

    图  6  CaSO4/Ben-15%Fe载氧体12次循环反应前后的SEM分析

    Figure  6.  SEM analysis of CaSO4/Ben-15%Fe OCs before and after 12 th cycles

    图  7  CaSO4/Ben-15%Fe载氧体颗粒反应前后孔径分布情况

    Figure  7.  Pore size distribution of CaSO4/Ben-15%Fe oxygen carrier particles before and after reaction

    图  8  CO平均转化率的衰减比

    Figure  8.  Attenuation ratio of CO average conversion

    图  9  不同载氧体在800 °C下的TG和DTG曲线

    Figure  9.  TG and DTG curves of different OCs at 800 °C

    图  10  CaSO4/Ben实验数据和模型结果与反应条件的比较

    Figure  10.  Comparison of experimental data and model results of CaSO4/Ben with reaction conditions

    图  11  ln k与1/T的Arrhenius图

    Figure  11.  Arrhenius Diagrams of ln k and 1/T

    图  12  活化能E随Fe负载量的变化曲线

    Figure  12.  Change curve of activation energy E with Fe content

    表  1  实验条件

    Table  1.   Experimental conditions

    Related parametersGas compositionGas flow/(L·min−1)Temperature/℃Reaction time/min
    Reduction stageφ (CO) 20%, φ (N2) 80%1.8900 20
    Oxidation stageφ (O2) 10%, φ (N2) 90%φ (O2) 10% (in exhaust gas)
    下载: 导出CSV

    表  2  新制CaSO4/Ben和CaSO4/Ben-15%Fe载氧体颗粒孔径特性

    Table  2.   Pore size characteristics of newly prepared CaSO4/Ben and CaSO4/Ben-15%Fe OCs

    SampleSBET/(m2·g−1)Vp/(cm3·g−1)Dpore/nm
    CaSO4/Ben2.45480.01477230.4082
    CaSO4/Ben-15%Fe3.17950.02244232.6607
    下载: 导出CSV

    表  3  CaSO4/Ben-15%Fe载氧体颗粒反应前后孔径特性

    Table  3.   Pore size characteristics of CaSO4/Ben-15%Fe OCs before and after reaction

    SampleSBET/(m2·g−1)Vp/(cm3·g−1)D/nm
    Raw CaSO4/Ben-15%Fe3.180.02232.66
    CaSO4/Ben-15%Fe after 12th cycle2.670.01327.71
    下载: 导出CSV

    表  4  不同反应温度对应的最佳拟合值m

    Table  4.   Best fitting value m corresponding to different reaction temperatures

    Temperature/°CBest fitting
    value of m
    Linear correlation coefficientStandard deviation
    8001.7110.9460.027
    8501.7190.9530.030
    9001.7500.9760.027
    9501.7560.9910.019
    下载: 导出CSV
  • [1] RUBIN E S, MANTRIPRAGADA H, MARKS A, et al. The outlook for improved carbon capture technology[J]. Progress in Energy and Combustion Science, 2012, 38(5): 630-671. doi: 10.1016/j.pecs.2012.03.003
    [2] BERGUERAND N, LYNGFELT A. Design and operation of a 10 kW chemical-looping combustor for solid fuels – Testing with South African coal[J]. Fuel, 2008, 87(12): 2713-2726. doi: 10.1016/j.fuel.2008.03.008
    [3] DENNIS J S, MUELLER C R, SCOTT S A. In situ gasification and CO2 separation using chemical looping with a Cu-based oxygen carrier: Performance with bituminous coals[J]. Fuel, 2010, 89(9): 2353-2364. doi: 10.1016/j.fuel.2010.01.037
    [4] RICHTER H J, KNOCHE K F. Reversibility of Combustion Processes[M]. Efficiency and Costing. 1983.
    [5] ABUELGASIM S, WANG W, ABDALAZEEZ A. A brief review for chemical looping combustion as a promising CO2 capture technology: Fundamentals and progress[J]. Science of The Total Environment, 2020, 764: 142892. doi: 10.1016/j.scitotenv.2020.142892
    [6] 秦翠娟, 沈来宏, 郑敏, 等. 基于CaSO4载氧体的煤化学链燃烧还原反应实验研究[J]. 中国电机工程学报, 2009, 29(17): 43-50. doi: 10.3321/j.issn:0258-8013.2009.17.008
    [7] 贾伟华, 刘永卓, 胡修德, 等. 煤化学链燃烧中CaSO4/膨润土复合载氧体的反应特性[J]. 化学反应工程与工艺, 2014, 30(1): 35-40.
    [8] 崔雨, 张素平, 蔡勤杰, 等. Ni/改性蒙脱土-海泡石催化生物油重整制氢[J]. 华东理工大学(自然科学版), 2019, 45(2): 216-223. doi: 10.14135/j.cnki.1006-3080.20180312007
    [9] 周树理. 非混合燃烧中CaSO4载氧体的研究[J]. 中国科学院工程热物理所: 2007.
    [10] LIU S, LEE D, LIU M, et al. Selection and application of binders for CaSO4 oxygen carrier in chemical-looping combustion[J]. Energy & Fuels, 2010, 24: 6675-6681. doi: 10.1021/ef101110w
    [11] HOSSEINI D, DONAT F, ABDALA P M, et al. Reversible exsolution of dopant improves the performance of Ca2Fe2O5 for chemical looping hydrogen production[J]. ACS Applied Materials & Interfaces, 2019, 11: 18276-18284. doi: 10.1021/acsami.8b16732
    [12] YANG J, MA L, YANG J, et al. Thermodynamic and kinetic analysis of CuO-CaSO4 oxygen carrier in chemical looping gasification[J]. Energy, 2019, 188: 116109. doi: 10.1016/j.energy.2019.116109
    [13] WANG B W, LI H H, WANG W, et al. Chemical looping combustion of lignite with the CaSO4–CoO mixed oxygen carrier[J]. Journal- Energy Institute, 2020, 93(3): 1229-1241. doi: 10.1016/j.joei.2019.11.006
    [14] WANG B, LI H, WANG W, et al. Reaction characteristics investigation of the combined template method-made CaSO4-Mn3O4 mixed oxygen carrier with lignite[J]. Energy & Fuels, 2019, 33(9): 8954-8966. doi: 10.1021/acs.energyfuels.9b01786
    [15] DING N, ZHANG C, LUO C, et al. Effect of hematite addition to CaSO4 oxygen carrier in chemical looping combustion of coal char[J]. Rsc Advances, 2015, 5(69): 56362-56376. doi: 10.1039/c5ra06887h
    [16] 张志丰, 王亦飞, 朱龙雏, 等. 基于铁基载氧体的无烟煤化学链燃烧过程中硫分布特性[J]. 化工学报, 2018, 69(04): 1578-1585. doi: 10.11949/j.issn.0438-1157.20170838
    [17] MA L, DU Y, NIU X, et al. Thermal and kinetic analysis of the process of thermochemical decomposition of phosphogypsum with CO and additives[J]. Industrial & Engineering Chemistry Research, 2012, 51(19): 6680-6685. doi: 10.1021/ie2029859
    [18] DI Z C, YANG F, CAO Y, et al. The transformation pathways on the catalytic and stability-promoted CaSO4 reduction in CLC process using Fe2O3 supported[J]. Fuel, 2019, 253: 327-338. doi: 10.1016/j.fuel.2019.04.141
    [19] WHEELOCK T D, BOYLAN D R. Reductive decomposition of gypsum by carbon monoxide[J]. Ind Eng Chem, 1960, 52(3): 215-218. doi: 10.1021/ie50603a023
    [20] OH J S, WHEELOCK T D. Reductive decomposition of calcium sulfate with carbon monoxide: reaction mechanism[J]. Industrial & Engineering Chemistry Research, 1990, 29(4): 544-550. doi: 10.1021/ie00100a008
    [21] SHEN L, ZHENG M, XIAO J, et al. A mechanistic investigation of a calcium-based oxygen carrier for chemical looping combustion[J]. Combustion & Flame, 2008, 154(3): 489-506. doi: 10.1016/j.combustflame.2008.04.017
    [22] XIAO R, SONG Q L. Characterization and kinetics of reduction of CaSO4 with carbon monoxide for chemical-looping combustion[J]. Combustion and Flame, 2011, 158(12): 2524-2539. doi: 10.1016/j.combustflame.2011.05.011
    [23] ZHANG S, XIAO R, LIU J, et al. Performance of Fe2O3/CaSO4 composite oxygen carrier on inhibition of sulfur release in calcium-based chemical looping combustion[J]. International Journal of Greenhouse Gas Control, 2013, 17: 1-12. doi: 10.1016/j.ijggc.2013.04.010
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  58
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-13
  • 网络出版日期:  2021-05-20

目录

    /

    返回文章
    返回