高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

anti-EGFR scFv-FTH1/AP1-FTH1纳米粒子的构建及其治疗哮喘小鼠的应用

汪蓉蓉 张天宝 曹旭妮

汪蓉蓉, 张天宝, 曹旭妮. anti-EGFR scFv-FTH1/AP1-FTH1纳米粒子的构建及其治疗哮喘小鼠的应用[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.2022043002
引用本文: 汪蓉蓉, 张天宝, 曹旭妮. anti-EGFR scFv-FTH1/AP1-FTH1纳米粒子的构建及其治疗哮喘小鼠的应用[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.2022043002
Wang Rongrong, Zhang Tianbao, Cao Xuni. Construction of Anti-EGFR scFV-FTH1/AP1-FTH1 nanoparticles and its Application in the Treatment of Asthmatic Mice[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.2022043002
Citation: Wang Rongrong, Zhang Tianbao, Cao Xuni. Construction of Anti-EGFR scFV-FTH1/AP1-FTH1 nanoparticles and its Application in the Treatment of Asthmatic Mice[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.2022043002

anti-EGFR scFv-FTH1/AP1-FTH1纳米粒子的构建及其治疗哮喘小鼠的应用

doi: 10.14135/j.cnki.1006-3080.2022043002
基金项目: 国家自然科学基金(21375039) 和上海市科委科技创新行动计划(19142201300)资助项目
详细信息
    作者简介:

    汪蓉蓉(1994-),女,安徽安庆人,硕士生,主要研究方向为纳米生物医学。E-mail:wrahnu@163.com

    通讯作者:

    曹旭妮,E-mail:caoxuni@ecust.edu.cn

  • 中图分类号: Q71

Construction of Anti-EGFR scFV-FTH1/AP1-FTH1 nanoparticles and its Application in the Treatment of Asthmatic Mice

  • 摘要: 采用基因工程方法分别将抗EGFR 的单链抗体(anti-EGFR scFv)和靶向IL-4R的AP1短肽分别修饰到FTH1的N端,再通过蛋白表达、体外混合复性后成功制备了anti-EGFR scFv-FTH1/AP1-FTH1双靶向纳米粒子。结果表明该纳米粒子能正确组装成铁蛋白的特征笼状结构,粒径为(13.2 ± 1.3)nm。在哮喘小鼠模型中发现该纳米粒子能有效抑制哮喘多种症状,且在缓解气道高反应方面效果优于单靶向anti-EGFR scFv-FTH1/FTH1纳米粒子。

     

  • 图  1  AP1-FTH1/pET-28a(+)的构建及AP1-FTH1蛋白的表达

    Figure  1.  Construction of AP1-FTH1/pET-28a(+) and the expression of AP1-FTH1

    图  2  SDS-PAGE分析AP1-FTH1在E. coli. BL21(DE3)中的诱导表达

    Figure  2.  SDS-PAGE of induced expression of AP1-FTH1 in E. coli. BL21(DE3)

    M-Protein molecular weight marker; Lane 1-Whole cell lysate with IPTG induction; Lane 2-Supernatant with IPTG induction; Lane 3-Pellet with IPTG induction;

    图  3  电泳分析anti-EGFR scFv-FTH1/AP1-FTH1 纳米粒子组装及组成

    Figure  3.  Electrophoretic analysis of assembly and composition of anti-EGFR scFv-FTH1/AP1-FTH1 nanoparticles.

    图  4  anti-EGFR scFv-FTH1/AP1-FTH1纳米粒子的TEM结果

    Figure  4.  TEM analysis of anti-EGFR scFv-FTH1/AP1-FTH1 nanoparticles

    图  5  HE染色分析不同纳米粒子对OVA诱导的哮喘小鼠的炎性浸润的影响

    Figure  5.  HE staining analysis of the effect of different nanoparticles on inflammatory infiltration in OVA-induced asthmatic mice

    Data in f were expressed as mean ± SEM, n = 6, ***p < 0.001

    图  6  PAS染色分析不同纳米粒子抑制OVA诱导哮喘小鼠模型的杯状细胞增生及气道粘液分泌的情况

    Figure  6.  PAS staining analysis of different nanoparticles inhibiting goblet cell hyperplasia and airway mucus secretion in OVA-induced asthma mouse model

    Data in f were expressed as mean ± SEM, n = 6; ***p < 0.001, student t test.

    图  7  不同纳米粒子对 OVA诱导哮喘小鼠的气道高反应性的影响

    Figure  7.  Effects of different nanoparticles on airway hyperresponsiveness in OVA-induced asthmatic mice

  • [1] SHI Y, TAN Y, MAO S, et al. Naringenin inhibits allergen-induced airway remodeling in a murine model of asthma[J]. Molecular Medicine Reports, 2014, 9: 1204-1208. doi: 10.3892/mmr.2014.1940
    [2] BOUSQUET J, CLARK T J, HURD S, et al. GINA guidelines on asthma and beyond[J]. Allergy, 2007, 62(2): 102‐112.
    [3] BOUSQUET J, JEFFERY P K, BUSSE W W, et al. Asthma From bronchoconstriction to airways inflammation and remodeling[J]. American Journal of Respiratory & Critical Care Medicine, 2000, 161(5): 1720‐1745.
    [4] VIGNOLA A M, GAGLIARDO R, SIENA A, et al. Airway remodeling in the patho-genesis of asthma[J]. Current Allergy & Asthma Reports, 2001, 1(1): 108‐115.
    [5] TAGAYA E, TAMAOKI J. Mechanisms of airway remodeling in asthma[J]. Allergology International, 2007, 56(4): 331-340.
    [6] WARNER S M, KNIGHT D A. Airway modeling and remodeling in the pathogenesis of asthma[J]. Current Opinion in Allergy and Clinical Immunology, 2008, 8(1): 44‐48.
    [7] SHARMA S V, BELL D W, SETTLEMAN J, et al. Epidermal growth factor receptor mutations in lung cancer[J]. Nature Reviews Cancer, 2007, 7(3): 169-181. doi: 10.1038/nrc2088
    [8] BURGEL P R, NADEL J A. Epidermal growth factor receptor-mediated innate immune responses and their roles in airway diseases[J]. European Respiratory Journal, 2008, 32(4): 1068-1081. doi: 10.1183/09031936.00172007
    [9] LAI H Y, ROGERS D F. Mucus hypersecretion in asthma: Intracellular signaling pathways as targets for pharmacotherapy[J]. Current Opinion in Allergy and Clinical Immunology, 2010, 10(1): 67-76. doi: 10.1097/ACI.0b013e328334643a
    [10] JAE O J, SOYOUN K, EUNSU C, et al. Designed Nanocage Displaying Ligand-Specific Peptide Bunches for High Affinity and Biological Activity[J]. ACS Nano, 2013, 7(9): 7462-7471. doi: 10.1021/nn403184u
    [11] MALAM Y, LOIZIDOU M, SEIFALIAN A M. Liposomes and Nanoparticles: Nanosized Vehicles for Drug Delivery in Cancer[J]. Trends in Pharmacological Sciences, 2009, 30(11): 592-599. doi: 10.1016/j.tips.2009.08.004
    [12] TORCHILIN V P. Micellar Nanocarriers: Pharmaceutical Perspectives[J]. Pharmaceutical Research, 2007, 24(1): 1-16.
    [13] LI X, QIU L H, ZHU P, et al. Epidermal growth factor-ferritin H-chain protein nanoparticles for tumor active targeting[J]. Small, 2012, 8(16): 2505-2514. doi: 10.1002/smll.201200066
    [14] 赵剑, 沈阳, 曹旭妮. 基于铁蛋白的溶栓蛋白纳米粒子的构建及活性分析[J]. 华东理工大学学报(自然科学版), 2019, 45(4): 576-584.
    [15] LAWSON D M, ARTYMIUK P J, YEWDALL S J, et al. Solving the Structure of Human H Ferritin by Genetically Engineering Intermolecular Crystal Contacts[J]. Nature, 1991, 349(6309): 541-544. doi: 10.1038/349541a0
    [16] UCHIDA M, WILLITS D, MULLER K, et al. Intracellular Distribution of Macrophage Targeting Ferritin-Iron Oxide Nano-composite[J]. Advanced Materials, 2009, 21: 458-462. doi: 10.1002/adma.200801209
    [17] VALERO E, TAMBALO S, MARZOLA P, et al. Magnetic Nanoparticles-Templated Assembly of Protein Subunits: A New Platform for Carbohydrate-Based MRI Nanoprobes[J]. Journal of the American Chemical Society, 2011, 133(13): 4889-4895. doi: 10.1021/ja110014p
    [18] ZHANG T B, WANG R R, LI Z H, et al. Anti-EGFR Single-Chain Fv Antibody Fragment Displayed on the Surface of Ferritin H-Chain Protein Nanoparticle for Asthma Therapy[J]. ACS Applied Bio Materials, 2021, 4(9): 6690-6702. doi: 10.1021/acsabm.1c00308
    [19] 陈慧, 高宗林, 曹旭妮. Anti EGFR scFv: FTH1/FTH1纳米粒子的制备及其在哮喘治疗中的应用[J]. 生物工程学报, 2021, 37(8): 2870-2877.
    [20] PINART M, ZHANG M, LI F, et al. IL-17A modulates oxidant stress-induced airway hyperresponsiveness but not emphysema[J]. PLoS One, 2013, 8(3): e58452. doi: 10.1371/journal.pone.0058452
    [21] BAO W P, ZHANG Y Y, ZHANG M, et al. Effects of ozone repeated short exposures on the airway/lung inflammation, airway hyperresponsiveness and mucus production in a mouse model of ovalbumin-induced asthma[J]. Biomedicine and Pharmacotherapy, 2018, 101: 293-303. doi: 10.1016/j.biopha.2018.02.079
    [22] GREY A, KATELARIS C H. Dupilumab in the treatment of asthma[J]. Immunotherapy, 2019, 11(10): 859-872.
  • 加载中
图(7)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  6
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-30
  • 网络出版日期:  2022-08-18

目录

    /

    返回文章
    返回