高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

金、银混合纳米颗粒的LSPR效应对白光OLED电致发光性能的影响

王沪生 谢海芬 牟海川 王瑞斌 盛明远

王沪生, 谢海芬, 牟海川, 王瑞斌, 盛明远. 金、银混合纳米颗粒的LSPR效应对白光OLED电致发光性能的影响[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.2021-01-11
引用本文: 王沪生, 谢海芬, 牟海川, 王瑞斌, 盛明远. 金、银混合纳米颗粒的LSPR效应对白光OLED电致发光性能的影响[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.2021-01-11
WANG Husheng, XIE Haifen, MU Haichuan, WANG Ruibin, SHENG Mingyuan. Effects of LSPR of Au/Ag Mixed Nanoparticles on the Electroluminescence of White Organic Light Emitting Diode[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.2021-01-11
Citation: WANG Husheng, XIE Haifen, MU Haichuan, WANG Ruibin, SHENG Mingyuan. Effects of LSPR of Au/Ag Mixed Nanoparticles on the Electroluminescence of White Organic Light Emitting Diode[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.2021-01-11

金、银混合纳米颗粒的LSPR效应对白光OLED电致发光性能的影响

doi: 10.14135/j.cnki.1006-3080.2021-01-11
详细信息
    作者简介:

    王沪生(1996—),男,上海人,硕士生,主要研究方向为有机发光器件。E-mail:994891518@qq.com

    通讯作者:

    谢海芬,E-mail:hfxie@ecust.edu.cn

  • 中图分类号: TN27

Effects of LSPR of Au/Ag Mixed Nanoparticles on the Electroluminescence of White Organic Light Emitting Diode

  • 摘要: 研究了金、银纳米颗粒以及他们的混合纳米颗粒位于空穴注入层PEDOT: PSS之下时,其产生的局域表面等离子体共振效应(LSPR)对白光有机电致发光器件(WOLED)电致发光(EL)性能的影响。白光OLED器件的结构是ITO/Ag, Au NPs/PEDOT: PSS/TAPC/TCTA/mCP: FIrpic(8%)/Ir(piq)2acac/TPBi/LiF/Al。结果表明单独的金、银NPs都能增强提高WOLED器件的外部量子效率(EQE)和功率效率(PE),二者混合之后可以进一步提高器件的EQE和PE,并得到了最优的比例配方为Au NPs与Ag NPs溶液的体积比为3: 1,此时WOLED器件的EQE和PE分别为15.19%和15.03 lm/W,相比于没有NPs的器件分别提高了29.06%和23.00%。通过激子动力学研究,揭示了LSPR效应及其Au、Ag NPs比例对EL性能影响的内在机制。

     

  • 图  1  引入金属NPs后的器件结构

    Figure  1.  OLEDs’ structure with metal nanoparticles

    图  2  Au NPs的TEM图像(a)HRTEM图像(b)旋涂在ITO上的FESEM图像(c)

    Figure  2.  TEM image(a) HRTEM image(b) FESEM image(c) of Au NPs spin coated on ITO glass

    图  3  Ag NPs的TEM图像(a)HRTEM图像(b)旋涂在ITO上的FESEM图像(c)

    Figure  3.  TEM image(a) HRTEM image(b) FESEM image(c) of Ag NPs spin coated on ITO glass

    图  4  Ag/Au混合NPs的TEM图像(a)(b)旋涂在ITO上的FESEM图像(c)NPs的EDX分析(d)

    Figure  4.  TEM image(a)(b) FESEM image(c) of Ag/Au mixed NPs spin coated on ITO glass EDX analysis of NPs(d)

    图  5  Au NPs、Ag NPs以及混合NPs的吸收光谱

    Figure  5.  Absorption spectra of Au NPs, Ag NPs and Au/Ag mixed NPs

    图  6  蓝光OLED器件的能级结构图(a) EL光谱(6V)(b) PL光谱(c) 电流密度-电压曲线(d) 亮度-EQE曲线(e) 亮度-PE曲线(f)

    Figure  6.  Energy levels of Blue OLED(a) EL spectra at 6V(b) PL spectra(c) Current density-Voltage (I-V) curve(d) Luminescence-EQE (L-EQE) curve(e) Luminescence-PE (L-PE) curve(f)

    图  7  绿光OLED器件的能级结构图(a) EL光谱(6V)(b) PL光谱(c)电流密度-电压曲线(d) 亮度-EQE曲线(e) 亮度-PE曲线(f)

    Figure  7.  Energy levels of Green OLED(a) EL spectra at 6V(b) PL spectra(c) Current density-Voltage (I-V) curve(d) Luminescence-EQE (L-EQE) curve(e) Luminescence-PE (L-PE) curve(f)

    图  8  白光OLED器件的能级结构图(a) EL光谱(b) PL光谱(c) 电流密度-电压曲线(d) 亮度-EQE曲线(e) 亮度-PE曲线(f)

    Figure  8.  Energy levels of White OLED (WOLED) (a) EL spectra at 6V(b) PL spectra(c) Current density-Voltage (I-V) curve(d) Luminescence-EQE (L-EQE) curve(e) Luminescence-PE (L-PE) curve(f)

    图  9  白光OLED器件的能量转移

    Figure  9.  Energy Transfer in White OLED

    表  1  蓝光OLED器件的EL性能

    Table  1.   EL performance of Blue OLED with and without NPs

    Blue OLEDEQE/%Improvement(EQE)/%PE/(lm·W−1)Improvement(PE)/%Max.Brightness /(cd·m−2)CIE
    B4-121.8227.4021.8140.9911098(0.14, 0.33)
    B3-122.8833.4122.4845.3113028(0.14, 0.33)
    B1-121.9628.0421.1936.9711513(0.14, 0.33)
    B1-321.5125.4220.2430.8311355(0.14, 0.33)
    B1-420.8921.8119.9929.2211298(0.14, 0.33)
    B-Au20.4919.4820.0629.6711207(0.14, 0.33)
    B-Ag20.1217.3219.9128.7011143(0.14, 0.33)
    B017.15/15.47/10174(0.14, 0.33)
    下载: 导出CSV

    表  2  绿光OLED器件的EL性能

    Table  2.   EL performance of Green OLED with and without NPs

    Green OLEDEQE/%Improvement(EQE)/%PE/(lm·W−1)Improvement(PE)/%Max. Brightness/ (cd·m−2)CIE
    G4-112.2525.7842.9856.4039852(0.29,0.62)
    G3-112.7932.4045.2164.5240306(0.29,0.62)
    G1-112.2326.6043.6358.7739352(0.29,0.62)
    G1-311.7821.9540.1946.2538646(0.29,0.62)
    G1-411.2816.7738.8237.9938087(0.29,0.62)
    G-Au11.5219.2536.6233.2637973(0.29,0.62)
    G-Ag10.9213.0436.0431.1536751(0.29,0.62)
    G09.66/27.48/34195(0.29,0.62)
    下载: 导出CSV

    表  3  白光OLED器件的EL性能

    Table  3.   EL performance of White OLED with and without NPs

    White OLEDEQE/%Improvement(EQE)/%PE/(lm·W−1)Improvement(PE)/%Brightness Max/ (cd·m−2)CIE
    W4-114.8626.2514.8021.1114628(0.33, 0.35)
    W3-115.1929.0615.0323.0015493(0.33, 0.35)
    W1-114.9826.2714.8621.6014823(0.33, 0.35)
    W1-314.5623.7014.5819.3114200(0.33, 0.35)
    W1-414.2020.6514.2016.2013845(0.33, 0.35)
    W-Au14.1119.8814.0314.8113416(0.33, 0.35)
    W-Ag13.5014.7013.5210.6412930(0.33, 0.35)
    W011.77/12.22/12173(0.33, 0.35)
    下载: 导出CSV

    表  4  不同发光层器件的光物理性质

    Table  4.   Photophysical properties of various emission layer (EML)

    Emission layerτ475nm/μsτ510nm/μsPLQY/%B→R+G KET/μs−1G→R KET/μs−1
    B4-11.720/25.98//
    B3-11.708/27.62//
    B1-11.727/25.08//
    B1-31.757/25.03//
    B1-41.852/24.08//
    B-Au1.810/24.10//
    B-Ag1.926/23.92//
    B01.989/22.95//
    G4-1/1.79323.02//
    G3-1/1.78324.45//
    G1-1/1.79122.87//
    G1-3/1.80922.17//
    G1-4/1.91021.98//
    G-Au/2.04821.94//
    G-Ag/2.09020.37//
    G0/2.12419.61//
    W4-11.5781.65817.800.02840.0475
    W3-11.5621.64420.310.03360.0540
    W1-11.5891.64917.650.03170.0431
    W1-31.5991.70816.930.01070.0392
    W1-41.6241.71816.510.00740.0296
    W-Au1.6771.72016.380.00690.0137
    W-Ag1.6691.73014.890.00330.0130
    W01.7061.74014.10//
    下载: 导出CSV
  • [1] SANDER R, STUMPFLEN V, WENDORFF J H, et al. Synthesis, properties and guest-host systems of triphenylamine-based oligo(arylenevinylene)s: Advanced materials for LED application[J]. Marcromolecules, 1996, 29(24): 7705-7708. doi: 10.1021/ma960743y
    [2] RANKE P, BLEY I, SIMMER J, et al. Electroluminescene and electron transport in a perylene dye[J]. Applied Physics Letters, 1997, 71(10): 1332-1334. doi: 10.1063/1.119929
    [3] HAMADA Y, SANO T, FUJITA M T, et al. Organic electroluminescent devices with 8-hydroxyquinoline derivative-metal complexes as an emitter[J]. Japanese Journal of Applied Physics, 1993, 32(4): 514-515.
    [4] ADACHI C, TOKITO S, TSUTSUI T, et al. Organic electroluminescent devices with a three-layer structures[J]. Japanese Journal of Applied Physics, 1988, 27(4): 713-715.
    [5] HOSOKAWA C, KAWASAKI N, SAKAMOTO S, et al. Bright blue electroluminescence from hole transporting polycarbonate[J]. Japanese Journal of Applied Physics, 1992, 61(21): 2503-2505.
    [6] FORREST S R, BURROWS P E, SHEN S, et al. The stacked OLED(SOLED): A new type of organic device for achieving high-resolution full-color displays[J]. Synthetic Metals, 1997, 91(1-3): 9-13. doi: 10.1016/S0379-6779(97)03966-0
    [7] BERNANOSE A, PHARMACIE F D, NANCY U D. Electroluminescence of compounds[J]. British Journal Applied Physics, 1955, 6(4): S54-S55.
    [8] POPE M, KALLMANN H P, MAGNANTE P J. Electroluminescence in organic crystal[J]. Journal of Chemical Physics, 1963, 38(8): 2042-2049. doi: 10.1063/1.1733929
    [9] VINCETT P S, BARLOW W A, HANN R A, et al. Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films[J]. Thin Solid Films, 1982, 94(2): 171-183. doi: 10.1016/0040-6090(82)90509-0
    [10] ADACHI C, TSUTSUI T, SAITO S. Blue light-emitting organic electroluminescent devices[J]. Applied Physics Letters, 1990, 56(9): 779-781.
    [11] LEE E J, RYU S O. Effect of the microstructural characteristics of a Ga-doped TiO2 hole block layer on an inverted structure organic solar cell[J]. Journal of the Korean Physical Society, 2016, 69(5): 806-810. doi: 10.3938/jkps.69.806
    [12] BALDO M A O, BRIEN D F, YOU Y J, et al. Highly efficient phosphorescent emission from organic Electroluminescent devices[J]. Nature, 1998, 395(6698): 151-154. doi: 10.1038/25954
    [13] D'ANDRADE B W, THOMPSON M E, FORREST S R. Controlling exciton diffusion in multilayer white phosphorescent organic light emitting devices[J]. Advanced Materials, 2002, 14(2): 147-151. doi: 10.1002/1521-4095(20020116)14:2<147::AID-ADMA147>3.0.CO;2-3
    [14] ADACHI C, BALDO M A, THOMPSON M E, et al. Nearly 100% internal phosphorescence efficiency in an organic light emitting device[J]. Journal of Applied Physics, 2001, 90(10): 5048-5051. doi: 10.1063/1.1409582
    [15] BIAN C, WANG Q, RAN Q, et al. New carbazole-based bipolar hosts for efficient blue phosphorescent organic light-emitting diodes[J]. Organic Electronics, 2018, 52: 138-145. doi: 10.1016/j.orgel.2017.10.015
    [16] YIRANG I, HYUN H S, YEOB L J. Bipolar type indolocarbazole host for green phosphorescent organic light-emitting diodes[J]. Journal of Industrial and Engineering Chemistry, 2018, 66: 381-386. doi: 10.1016/j.jiec.2018.06.004
    [17] HAN Z, DONG X Y, LUO P, et al. Ultrastable atomically precise chiral silver clusters with more than 95% quantum efficiency[J]. Science Advances, 2020, 6(6): eaay0107. doi: 10.1126/sciadv.aay0107
    [18] HAN Z, ZHAO X, PENG P, et al. Intercluster aurophilicity-driven aggregation lighting circularly polarized luminescence of chiral gold clusters[J]. Nano Research, 2020, 13: 3248-3252. doi: 10.1007/s12274-020-2997-0
    [19] CHANG C Y, YU C L, LIN C A, et al. Hybrid composites of quantum dots, monolayer WSe 2, and Ag nanodisks for white light-emitting diodes[J]. ACS Applied Nano Materials, 2020, 3(7): 6855-6862. doi: 10.1021/acsanm.0c01227
    [20] ZHANG Y, SUN H, ZHANG S, et al. Enhancing luminescence in all-inorganic perovskite surface plasmon light-emitting diode by incorporating Au-Ag alloy nanoparticle[J]. Optical Materials, 2019, 89: 563-567. doi: 10.1016/j.optmat.2019.01.074
    [21] JUNG M, YOON D M, KIM M, et al. Enhancement of hole injection and electroluminescence by ordered Ag nanodot array on indium tin oxide anode in organic light emitting diode[J]. Applied Physics Letters, 2014, 105(1): 013306. doi: 10.1063/1.4890135
    [22] WANG D, YASUI K, OZAWA M, et al. Hole injection enhancement by sparsely dispersed Au nanoparticles on indium tin oxide electrode in organic light emitting devices[J]. Applied Physics Letters, 2013, 102(2): 10.
    [23] MU H, WEI B, XIE H, et al. Effects of surface plasmon resonance of the Ag nanoparticles on the efficiency and color stability of the blue light phosphorescent organic light emitting diodes[J]. Journal of Luminescence, 2017, 192: 1110-1118. doi: 10.1016/j.jlumin.2017.07.008
    [24] CHO C, KANG H, BAEK S W, et al. Improved internal quantum efficiency and light-extraction efficiency of organic light-emitting diodes via synergistic doping with Au and Ag nanoparticles[J]. Acs Applied Materials & Interfaces, 2016, 8(41): 27911-27919.
    [25] FRENS. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions[J]. Nature Physical Science, 1973, 241: 20-22. doi: 10.1038/physci241020a0
    [26] JI W, ZHAO H, YANG H, et al. Effect of coupling between excitons and gold nanoparticle surface plasmons on emission behavior of phosphorescent organic lightemitting diodes[J]. Organic Electronics, 2015, 22: 154-159. doi: 10.1016/j.orgel.2015.03.053
    [27] YANG K Y, CHOI K C, AHN C W. Surface plasmon-enhanced energy transfer in an organic light-emitting device structure[J]. Optics Express, 2009, 17(14): 11495-11504. doi: 10.1364/OE.17.011495
    [28] LIU F, NUNZI J M. Enhanced organic light emitting diode and solar cell performances using silver nano-clusters[J]. Organic Electronics, 2012, 13(9): 1623-1632. doi: 10.1016/j.orgel.2012.04.027
    [29] LAMPERT M A. Simplified theory of space-charge-limited currents in an insulator with traps[J]. Physical Review, 1956, 103(6): 1648-1656. doi: 10.1103/PhysRev.103.1648
    [30] FUJIKI A, UEMURA T, ZETTSU N, et al. Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode[J]. Applied Physics Letters, 2010, 96(4): 043307-043309. doi: 10.1063/1.3271773
    [31] JUNG D R, KIM J, NAM S, et al. Photoluminescence enhancement in CdS nanoparticles by surface-plasmon resonance[J]. Applied Physics Letters, 2011, 99(4): 041906. doi: 10.1063/1.3615782
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  712
  • HTML全文浏览量:  304
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-11
  • 网络出版日期:  2021-04-12

目录

    /

    返回文章
    返回