高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

pH敏感型聚合物胶束对I型志贺毒素A亚基的递送及细胞毒性

孙敏佳 刘晔宏 薛依桐 徐俊 王彤 徐首红 张俊琪

孙敏佳, 刘晔宏, 薛依桐, 徐俊, 王彤, 徐首红, 张俊琪. pH敏感型聚合物胶束对I型志贺毒素A亚基的递送及细胞毒性[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.2020
引用本文: 孙敏佳, 刘晔宏, 薛依桐, 徐俊, 王彤, 徐首红, 张俊琪. pH敏感型聚合物胶束对I型志贺毒素A亚基的递送及细胞毒性[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.2020
SUN Minjia, LIU Yehong, XUE Yitong, XU Jun, WANG Tong, XU Shouhong, ZHANG junqi. Antitumor activity of Shiga toxin 1 subunit A delivered by polymeric micelles[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.2020
Citation: SUN Minjia, LIU Yehong, XUE Yitong, XU Jun, WANG Tong, XU Shouhong, ZHANG junqi. Antitumor activity of Shiga toxin 1 subunit A delivered by polymeric micelles[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.2020

pH敏感型聚合物胶束对I型志贺毒素A亚基的递送及细胞毒性

doi: 10.14135/j.cnki.1006-3080.2020
基金项目: 国家自然科学基金(31400124,21776071,22078087);国家科技重大专项(2018ZX10101003-005-010)
详细信息
    作者简介:

    孙敏佳(1996--),女,硕士生,主要研究方向为智能型纳米药物载体。E-mail:13758216033@163.com

    通讯作者:

    徐首红,Email:xushouhong@ecust.edu.cn

    张俊琪,Email:junqizhang@fudan.edu.cn

  • 中图分类号: Q67

Antitumor activity of Shiga toxin 1 subunit A delivered by polymeric micelles

  • 摘要: 探究了pH敏感聚合物胶束递送和释放I型志贺毒素A亚基至肿瘤细胞Hela的效率和功能。首先通过在大肠杆菌中分别重组表达I型志贺毒素A亚基Stx1A和减毒突变A亚基Mu-Stx1A,用pH敏感的聚合物胶束PEG8-PDPA100-PEG8分别来运载至宫颈癌细胞Hela中。体外活性实验证明重组蛋白Stx1A具有明显的抑制蛋白合成作用,而减毒变异型Mu-Stx1A不具备。然后用聚合物胶束将Stx1A及Mu-Stx1A转运至Hela细胞中,发现随着蛋白浓度的增加细胞转染效率增大。包载了Stx1A的胶束(Stx1A micelle)进入细胞后,释放活性A亚基Stx1A而导致细胞病变和凋亡,该现象随Stx1A的浓度增加更显著。实验证明聚合物胶束可以成功包载、运输和稳定释放具有活性的Stx1A分子至肿瘤细胞内,发挥毒性功能诱导细胞程序性死亡。实验表明,该聚合物胶束可以在蛋白类药物运输中发挥有效作用,为后续I型志贺毒素A亚基在肿瘤治疗中的应用性研究提供重要的理论基础。

     

  • 图  1  (a). Xbal和XhoI双酶切电泳(b) Stx1A重组蛋白(I)和Mu-Stx1A重组蛋白(II)的SDS-PAGE

    Figure  1.  (a) pET-28a-Stx1A digesled with Xbal and XhoI (b) SDS-PAGE of Stx1A (I) and SDS-PAGE of Mu-Stx1A (II)

    图  2  Stx1A和Mu-Stx1A对蛋白合成抑制作用

    Figure  2.  Inhibition of protein synthesis by Stx1A and Mu-Stx1A

    图  3  空胶束(a)、蛋白(b)及载蛋白胶束(c)的TEM图

    Figure  3.  TEM images of unloaded micelles (a), free protein (b) and protein-loaded micelles (c)

    图  4  FITC标记的Stx1A micelle和Mu-Stx1A micelle的细胞转染率

    Figure  4.  Representative flow cytometry analysis of the uptake of FITC-labelled Stx1A and Mu-Stx1A micelles by Hela cells

    图  5  Hela细胞与不同浓度的Stx1A micelle和Mu-Stx1A micelle作用后的细胞形态

    Figure  5.  Apoptosis of Hela cells after treated with different concentration of Stx1A micelle or Mu-Stx1A micelle

    图  6  Hela 细胞与不同浓度的 Stx1A micelle 或 Mu-Stx1A micelle 作用后的凋亡实验

    Figure  6.  The morphology of Hela cells after treated with different concentration of Stx1A micelle or Mu-Stx1A micelle

    表  1  PEG8-PDPA100-PEG8胶束、Stx1A micelle、Mu-Stx1A micelle的性质参数

    Table  1.   Properties and parameters of PEG8-PDPA100-PEG8 micelle, Stx1A micelle, Mu-Stx1A micelle

    SamplesDiameter/nmPDI(±0.06)ζ/mV
    Unloaded micelle173.4±1.80.04−8.8±1.2
    Free-Stx1A44.47±8.10.558−11.0±1.8
    Free-Mu-Stx1A65.92±0.60.608−12.4±2.0
    Stx1A micelle189.0±2.00.172−12.2±0.7
    Mu-Stx1A micelle208.5±2.20.223−14.9±2.4
    下载: 导出CSV
  • [1] WEERAKKODY L R, WITHARANA C. The role of bacterial toxins and spores in cancer therapy[J]. Life Sciences, 2019, 235: 116839. doi: 10.1016/j.lfs.2019.116839
    [2] MELLAERT V L, BARBE S, ANNE J. Clostridium spores as anti-tumour agents[J]. Trends in Microbiology, 2006, 14(4): 190-196. doi: 10.1016/j.tim.2006.02.002
    [3] BAINDARA P, MANDAL S M. Bacteria and bacterial anticancer agents as a promising alternative for cancer therapeutics[J]. Biochimie, 2020, 177(20): 164-189.
    [4] RYAN R M, GREEN J, LEWIS C E. Use of bacteria in anti-cancer therapies[J]. Bioessays, 2006, 28(1): 84-94. doi: 10.1002/bies.20336
    [5] JOHANNES L, ROMER W. Shiga toxins-from cell biology to biomedical applications[J]. Nature Reviews Microbiology, 2010, 8(2): 105-116. doi: 10.1038/nrmicro2279
    [6] MELTON-CELSA A R. Shiga toxin (Stx) classification, structure, and function[J]. Microbiology Spectrum, 2014, 2(2): 24-45.
    [7] NG Y S, CHEN T B. Shiga toxins: from structure and mechanism to applications[J]. Apply Microbiology Biotechnology, 2016, 100(3): 1597-1610.
    [8] CHERLA R P, LEE S Y, TESH V L. Shiga toxins and apoptosis[J]. FEMS Microbiology Letters, 2003, 228(2): 159-166. doi: 10.1016/S0378-1097(03)00761-4
    [9] WILLYSSON A, STAHL A L, GILLET D, et al. Shiga toxin uptake and sequestration in extracellular vesicles is mediated by its B-subunit[J]. Toxins (Basel), 2020, 12(7): 449-464. doi: 10.3390/toxins12070449
    [10] VERNON L, JENNIFER A B, JENNIE W O, et al. Comparison of the relative toxicities of Shiga-like toxins type I and type II for mice[J]. Infection and Immunity, 1993, 61(8): 3392-3402. doi: 10.1128/iai.61.8.3392-3402.1993
    [11] RUSSO L M, MELTON-CELSA A R, SMITH M J, et al. Comparisons of native shiga toxins (Stxs) type 1 and 2 with chimeric toxins indicate that the source of the binding subunit dictates degree of toxicity[J]. Plos One, 2014, 9(3): e93463. doi: 10.1371/journal.pone.0093463
    [12] HUGHES A K, STRICKLETT P K, KOHAN D E. Cytotoxic effect of Shiga toxin-1 on human proximal tubule cells[J]. Kidney International, 1998, 54(2): 426-437. doi: 10.1046/j.1523-1755.1998.00015.x
    [13] LIU X, WU F, JI Y, et al. Recent advances in anti-cancer protein/peptide delivery[J]. Bioconjug Chemistry, 2019, 30(2): 305-324. doi: 10.1021/acs.bioconjchem.8b00750
    [14] LEE Y W, LUTHER D C, KRETZMANN J A, et al. Protein delivery into the cell cytosol using non-viral nanocarriers[J]. Theranostics, 2019, 9(11): 3280-3292. doi: 10.7150/thno.34412
    [15] FANG J, NAKAMURA H, MAEDA H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect[J]. Advanced Drug Delivery Reviews, 2011, 63(3): 136-151. doi: 10.1016/j.addr.2010.04.009
    [16] LIU Y, WANG W, YANG J, et al. pH-Sensitive polymeric micelles triggered drug release for extracellular and intracellular drug targeting delivery[J]. Asian Journal of Pharmaceutical Sciences, 2013, 8(3): 159-167. doi: 10.1016/j.ajps.2013.07.021
    [17] KAUR S, PRASAD C, BALARISHNAN B, et al. Trigger responsive polymeric nanocarriers for cancer therapy[J]. Biomaterials Science, 2015, 3(7): 955-987. doi: 10.1039/C5BM00002E
    [18] SHEN Y, ZHANG J, HAO W, et al. Copolymer micelles function as pH-responsive nanocarriers to enhance the cytotoxicity of a HER2 aptamer in HER2-positive breast cancer cells[J]. International Journal of Nanomedicine, 2018, 13: 537-553. doi: 10.2147/IJN.S149942
    [19] HAO W J, LIU D Y, SHANG Y Z, et al. pH-Triggered copolymer micelles as drug nanocarriers for intracellular delivery[J]. Rsc Advances, 2016, 6(35): 29149-29158. doi: 10.1039/C6RA00673F
    [20] CAROLYN J, HOVDE S B C, JOHN J, et al. Evidence that glutamic acid 167 is an active-site residue of Shiga toxin[J]. Proceedings of the National Academy of Sciences, 1988, 85: 2568-2572. doi: 10.1073/pnas.85.8.2568
    [21] EISENHABER F, ARGOS P. Hydrophobic regions on protein surfaces: Definition based on hydration shell structure and a quick method for their computation[J]. Protein Engine, 1996, 9(12): 1121-1133. doi: 10.1093/protein/9.12.1121
    [22] RAY M, LEE Y W, SCALETTI F, et al. Intracellular delivery of proteins by nanocarriers[J]. Nanomedicine (Lond), 2017, 12(8): 941-952. doi: 10.2217/nnm-2016-0393
    [23] VARKOUHI A K, SCHOLTE M, STORM G, et al. Endosomal escape pathways for delivery of biologicals[J]. Journal of Controlled Release, 2011, 151(3): 220-228. doi: 10.1016/j.jconrel.2010.11.004
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  28
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-08
  • 网络出版日期:  2021-06-24

目录

    /

    返回文章
    返回